I am trying to implement a Neural Network for predicting the h1_hemoglobin in PyTorch. After creating a model, I kept 1 in the output layer as this is Regression. But I got the error as below. I'm not able to understand the mistake. Keeping a large value like 100 in the output layer removes the error but renders the model useless as I am trying to implement regression.
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0)
##### Creating Tensors
X_train=torch.tensor(X_train)
X_test=torch.tensor(X_test)
y_train=torch.LongTensor(y_train)
y_test=torch.LongTensor(y_test)
class ANN_Model(nn.Module):
def __init__(self,input_features=4,hidden1=20,hidden2=20,out_features=1):
super().__init__()
self.f_connected1=nn.Linear(input_features,hidden1)
self.f_connected2=nn.Linear(hidden1,hidden2)
self.out=nn.Linear(hidden2,out_features)
def forward(self,x):
x=F.relu(self.f_connected1(x))
x=F.relu(self.f_connected2(x))
x=self.out(x)
return x
loss_function = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr = 0.01)
epochs = 500
final_losses = []
for i in range(epochs):
i = i + 1
y_pred = model.forward(X_train.float())
loss=loss_function(y_pred, y_train)
final_losses.append(loss.item())
if i%10==1:
print("Epoch number: {} and the loss: {}".format(i, loss.item()))
optimizer.zero_grad()
loss.backward()
optimizer.step()

