I am making a class-incremental learning multi-label classifier. Here the model first trains with 7 labels. After training, another dataset emerges that contains the same labels except one more. I want to automatically add an extra node to the trained network and continue training on this new dataset. How can I do this?
class FeedForewardNN(nn.Module):
def __init__(self, input_size, h1_size = 264, h2_size = 128, num_services=8):
super().__init__()
self.input_size = input_size
self.lin1 = nn.Linear(input_size, h1_size)
self.lin2 = nn.Linear(h1_size, h2_size)
self.lin3 = nn.Linear(h2_size, num_services)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.lin1(x)
x = self.relu(x)
x = self.lin2(x)
x = self.relu(x)
x = self.lin3(x)
x = self.sigmoid(x)
return x
This is the architecture of the feedforward Neural Network. Then I first train on the data set with only 7 classes.
#Create NN
input_size = len(x_columns)
net1 = FeedForewardNN(input_size, num_services=7)
alpha= 0.001
#Define optimizer
optimizer = optim.Adam(net.parameters(), lr=alpha)
criterion = nn.BCELoss()
running_loss = 0
#Training Loop
loss_list = []
auc_list = []
for i in range(len(train_data_x)):
optimizer.zero_grad()
outputs = net1(train_data_x[i])
loss = criterion(outputs, train_data_y[i])
loss.backward()
optimizer.step()
However then, I want to add one additional output node, define the new weights but maintain the old trained weights, and train on this new data set.