0

I have Alexnet neural network:

class AlexNet(nn.Module):
def __init__(self, num_classes=100):
    super(AlexNet, self).__init__()
    self.features = nn.Sequential(
        nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
        nn.ReLU(inplace=True),
        nn.MaxPool2d(kernel_size=3, stride=2),
        nn.Conv2d(64, 192, kernel_size=5, padding=2),
        nn.ReLU(inplace=True),
        nn.MaxPool2d(kernel_size=3, stride=2),
        nn.Conv2d(192, 384, kernel_size=3, padding=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(384, 256, kernel_size=3, padding=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(256, 256, kernel_size=3, padding=1),
        nn.ReLU(inplace=True),
        nn.MaxPool2d(kernel_size=3, stride=2),
    )
    self.classifier = nn.Sequential(
        nn.Dropout(),
        nn.Linear(256 * 6 * 6, 4096),
        nn.ReLU(inplace=True),
        nn.Dropout(),
        nn.Linear(4096, 4096),
        nn.ReLU(inplace=True),
        nn.Linear(4096, num_classes),
    )

def forward(self, x):
    x = self.features(x)
    x = x.view(x.size(0), 256 * 6 * 6)
    x = self.classifier(x)
    return x

I am trying to get the information of the intermediate layers (for example the penultimate layer ) with backward hook but I couldn't get it

1 Answer 1

1

According to this answer

You have to split your model in different parts and create methods to access them parts such as :

class AlexNet(nn.Module):
    def __init__(self, num_classes=100):
        super(AlexNet, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(64, 192, kernel_size=5, padding=2),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
            nn.Conv2d(192, 384, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(384, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2),
        )
        self.classifier = nn.Sequential(
            nn.Dropout(),
            nn.Linear(256 * 6 * 6, 4096),
            nn.ReLU(inplace=True),
            nn.Dropout(),
            nn.Linear(4096, 4096),
            nn.ReLU(inplace=True),
            nn.Linear(4096, num_classes),
        )

    def getFeatures(self,x):
        x = self.features(x)
        return x.view(x.size(0), 256 * 6 * 6)
        
    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), 256 * 6 * 6)
        x = self.classifier(x)
        return x

This way is quite common and you can find plenty of examples.

Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.