2
from pyspark import SparkConf,SparkContext
conf=SparkConf().setMaster("local").setAppName("my App")
sc=SparkContext(conf=conf)
lines = sc.textFile("C:/Users/user/Downloads/learning-spark-master/learning-spark-master/README.md")
pythonLines = lines.filter(lambda line: "Python" in line)
pythonLines
pythonLines.first()

I am new to pyspark. I was trying to execute above code and I am getting following error after executing pythonLines(). Any help would be appreciated.

Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.runJob. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 3.0 failed 1 times, most recent failure: Lost task 0.0 in stage 3.0 (TID 3) (LAPTOP-GAN836TE.fios-router.home executor driver): org.apache.spark.SparkException: Python worker failed to connect back. at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:182) at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:107) at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:119) at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:145) at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373) at org.apache.spark.rdd.RDD.iterator(RDD.scala:337) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) at org.apache.spark.scheduler.Task.run(Task.scala:131) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:497) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1439) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:500) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Caused by: java.net.SocketTimeoutException: Accept timed out at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method) at java.net.DualStackPlainSocketImpl.socketAccept(DualStackPlainSocketImpl.java:131) at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:535) at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:189) at java.net.ServerSocket.implAccept(ServerSocket.java:545) at java.net.ServerSocket.accept(ServerSocket.java:513) at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:174) ... 14 more

Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2253) at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2202) at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2201) at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62) at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2201) at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1078) at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1078) at scala.Option.foreach(Option.scala:407) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1078) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2440) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2382) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2371) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:868) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2202) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2223) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2242) at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:166) at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:238) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.spark.SparkException: Python worker failed to connect back. at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:182) at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:107) at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:119) at org.apache.spark.api.python.BasePythonRunner.compute(PythonRunner.scala:145) at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:65) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373) at org.apache.spark.rdd.RDD.iterator(RDD.scala:337) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) at org.apache.spark.scheduler.Task.run(Task.scala:131) at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:497) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1439) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:500) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) ... 1 more Caused by: java.net.SocketTimeoutException: Accept timed out at java.net.DualStackPlainSocketImpl.waitForNewConnection(Native Method) at java.net.DualStackPlainSocketImpl.socketAccept(DualStackPlainSocketImpl.java:131) at java.net.AbstractPlainSocketImpl.accept(AbstractPlainSocketImpl.java:535) at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:189) at java.net.ServerSocket.implAccept(ServerSocket.java:545) at java.net.ServerSocket.accept(ServerSocket.java:513) at org.apache.spark.api.python.PythonWorkerFactory.createSimpleWorker(PythonWorkerFactory.scala:174) ... 14 more

1
  • the problem seems to be not in the code but in your set up, can you share details about that? Commented Jan 12, 2022 at 9:12

3 Answers 3

1

this error getting because of pyspark and python connection not established correctly.

Solution: set PYSPARK_PYTHON environment variable to python.

enter image description here

Note: make sure to restart your cmd or shell after adding environment variables

Sign up to request clarification or add additional context in comments.

1 Comment

This worked! Thank you
0

Based on the code , am not seeing anything wrong . Still you can analysis this issue based on the following data related .

  • Make sure 4th line lines rdd has the data based on the collect().

  • make your after filter line #5 , you are not getting empty rdd by using of isEmpty(). ref : link

Same code I have ran for your reference as sample.

enter image description here

Comments

0

I ran into the same error in Chapter 7 in the "Data Science on GCP" book by author Valliappa Lakshmanan.

The author points this out in one of the logistic_regression.ipynb cells by writing "if this is empty, change the shard you are using", but it's not clear that above error could be an indication of that.

Following their tip, simply change


inputs = 'gs://{}/flights/tzcorr/all_flights-00000-*'.format(BUCKET)

to something like (note the 1 instead of the 0 to select a different shard)


inputs = 'gs://{}/flights/tzcorr/all_flights-00001-*'.format(BUCKET)

You'd have to make an equivalent change further down to not test the model on the same data as you trained it on.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.