I am trying to find a highest point of an object in a mask of bitwise. I researched and found this question i did exactly as the answer said but the results were just (0,0) which are wrong
I am just trying in the same image as the question
Here is the code for that
import cv2
import numpy as np
def line(im, pt1, pt2, color, thickness):
im = cv2.line(im, pt1, pt2, color=color, thickness=thickness, lineType=cv2.LINE_AA)
return im
def empty(a):
pass
path = 'images/m_1.jpg'
global img
img = cv2.imread(path)
img = cv2.resize(img, (640, 480))
org_img = img.copy()
copy_img = img.copy()
img_blur = cv2.blur(img,(5,5))
imgHSV = cv2.cvtColor(img_blur, cv2.COLOR_BGR2HSV)
h_min = 0
h_max = 179
s_min = 0
s_max = 255
v_min = 48
v_max = 166
lower = np.array([h_min, s_min, v_min])
upper = np.array([h_max, s_max, v_max])
mask = cv2.inRange(imgHSV, lower, upper)
global imgResult
imgResult = cv2.bitwise_and(img, img, mask=mask)
imgResult = cv2.resize(imgResult, (640, 480))
cont, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
c = max(cont, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(c)
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
image = cv2.line(img, (int(w/2),y), (int(w/2),y+h), (0,0,255), 2)
global cropped_img
cropped_img = copy_img[y:y + h, x:x + w]
draw_img = np.zeros((img.shape[0], img.shape[1], img.shape[2]), dtype="uint8")
cv2.drawContours(draw_img,[c],-1,(255,255,255),thickness=-1)
img_bitwise = cv2.bitwise_and(org_img, draw_img)
margin = 90
draw_img = draw_img[margin:-margin]
imgResult = imgResult[margin:-margin]
img = img[margin:-margin]
img_bitwise = img_bitwise[margin:-margin]
print(draw_img.shape[:2])
has_white = print(np.any(draw_img, axis=1))
print(np.argmin(has_white))
result_i = np.argmin(has_white)
print(np.argmin(img_bitwise[result_i,:]))
cv2.imwrite('bit_img.png',img_bitwise)
cv2.imshow("Track Images", imgResult)
cv2.imshow("Result Images", img)
cv2.imshow("Cropped Image", cropped_img)
cv2.imshow("Draw Image", draw_img)
cv2.imshow("bit_img", img_bitwise)
k = cv2.waitKey(0)
if k == 27: # wait for ESC key to exit
cv2.destroyAllWindows()
elif k == ord('s'): # wait for 's' key to save and exit
cv2.imwrite(r'C:\Users\Anush\PycharmProjects\WeldPoolAnalysis\resultImages\imgResult.png', img)
cv2.imwrite(r'C:\Users\Anush\PycharmProjects\WeldPoolAnalysis\resultImages\imgCropped.png', cropped_img)
cv2.destroyAllWindows()
Output Of The Script
(300, 640)
[[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[False False False]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[ True True True]
[False False False]
[False False False]
[False False False]
[False False False]]
0
0



np.where(has_white)to find the coordinates of white pixels, thennp.argminon the y's.cv2.morphologyExopening/closing to your b/w image.