3

I have a csv file that I converted into dataframe using Pandas. Here's the dataframe:

Customer ProductID Count

John     1         50
John     2         45
Mary     1         75
Mary     2         10
Mary     5         15

I need an output in the form of a dictionary that looks like this:

{ProductID:1, Count:{John:50, Mary:75}},
{ProductID:2, Count:{John:45, Mary:10}},
{ProductID:5, Count:{John:0, Mary:15}}

I read the following answers:

python pandas dataframe to dictionary and

Convert dataframe to dictionary

This is the code that I'm having:

df = pd.read_csv('customer.csv') 
dict1 = df.set_index('Customer').T.to_dict('dict') 
dict2 = df.to_dict(orient='records')

and this is my current output:

dict1 = {'John': {'Count': 45, 'ProductID': 2}, 'Mary': {'Count': 15, 'ProductID': 5}}

dict2 = [{'Count': 50, 'Customer': 'John', 'ProductID': 1},
 {'Count': 45, 'Customer': 'John', 'ProductID': 2},
 {'Count': 75, 'Customer': 'Mary', 'ProductID': 1},
 {'Count': 10, 'Customer': 'Mary', 'ProductID': 2},
 {'Count': 15, 'Customer': 'Mary', 'ProductID': 5}]

1 Answer 1

4

IIUC you can use:

d = df.groupby('ProductID').apply(lambda x: dict(zip(x.Customer, x.Count)))
      .reset_index(name='Count')
      .to_dict(orient='records')

print (d)
[{'ProductID': 1, 'Count': {'John': 50, 'Mary': 75}}, 
 {'ProductID': 2, 'Count': {'John': 45, 'Mary': 10}}, 
 {'ProductID': 5, 'Count': {'Mary': 15}}]
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.