It's known that a unique parabola of the form $y=ax^{2}+bx+c$ exists for any three distinct points, provided that the points are non-collinear and their $x$ coordinates are distinct.
Consider the following three points:
- $A$ is a point with coordinates $(x_{1}; y_{1})$,
- $B$ is a point with coordinates $(x_{2}; y_{2})$,
- $C$ is a point with coordinates $(x_{3}; y_{3})$.
Let points $A$, $B$, and $C$ be non-collinear and satisfying $x_{1}\neq x_{2}$, $x_{1}\neq x_{3}$, and $x_{2}\neq x_{3}$. Therefore, through these points passes a unique parabola of the form $y=ax^{2}+bx+c$. We now proceed to express $a$, $b$, and $c$ in terms of coordinates of $A$, $B$, and $C$. As $A$, $B$, and $C$ are on the graph of the same parabola, their coordinates satisfy its equation, thus we arrive to the following system of equations:
$$ \begin{aligned} \begin{cases} y_{1} = ax_{1}^{2} + bx_{1} + c, \\ y_{2} = ax_{2}^{2} + bx_{2} + c, \\ y_{3} = ax_{3}^{2} + bx_{3} + c; \end{cases} &\Longleftrightarrow \begin{cases} y_{1} - y_{2} = (ax_{1}^{2} + bx_{1} + c) - (ax_{2}^{2} + bx_{2} + c), \\ y_{2} - y_{3} = (ax_{2}^{2} + bx_{2} + c) - (ax_{3}^{2} + bx_{3} + c); \end{cases} \\ &\Longleftrightarrow \begin{cases} y_{1} - y_{2} = a(x_{1}^{2} - x_{2}^{2}) + b(x_{1} - x_{2}), \\ y_{2} - y_{3} = a(x_{2}^{2} - x_{3}^{2}) + b(x_{2} - x_{3}); \end{cases} \\[4pt] &\Longleftrightarrow \begin{cases} y_{1} - y_{2} = a(x_{1} - x_{2})(x_{1} + x_{2}) + b(x_{1} - x_{2}), \\ y_{2} - y_{3} = a(x_{2} - x_{3})(x_{2} + x_{3}) + b(x_{2} - x_{3}); \end{cases} \\[4pt] &\Longleftrightarrow \begin{cases} y_{1} - y_{2} = (x_{1} - x_{2})(a(x_{1} + x_{2}) + b), \\ y_{2} - y_{3} = (x_{2} - x_{3})(a(x_{2} + x_{3}) + b); \end{cases} \\[4pt] &\Longleftrightarrow \begin{cases} \frac{y_{1} - y_{2}}{x_{1} - x_{2}} = a(x_{1} + x_{2}) + b, \\ \frac{y_{2} - y_{3}}{x_{2} - x_{3}} = a(x_{2} + x_{3}) + b. \end{cases} \end{aligned} $$
Now, by subtracting the second equation from the first, we get: \begin{align*} \frac{y_{1} - y_{2}}{x_{1} - x_{2}} - \frac{y_{2} - y_{3}}{x_{2} - x_{3}} &= (a(x_{1} + x_{2}) + b) - (a(x_{2} + x_{3}) + b) \\ &= a((x_{1} + x_{2}) - (x_{2} + x_{3})) + (b - b) \\ &= a(x_{1} + x_{2} - x_{2} - x_{3}) \\ &= a(x_{1} - x_{3}) \end{align*}
Thus, we express $a$ as follows:
$$ \boxed{a = \left(\frac{y_{1} - y_{2}}{x_{1} - x_{2}} - \frac{y_{2} - y_{3}}{x_{2} - x_{3}}\right) : (x_{1} - x_{3})} $$
Here, we stop.
Looking at this form of $a$, I should point out it's very easy to memorize and apply, but what I got also seems to have much in common with how one determines a slope for a line equation.
What's the connection of these 'slopes' to the leading coefficient of quadratic trinomial? Is there some sort of explanation known?