This is a follow-up to my previous question. I am implementing a Parameterized Quantum Circuit as a Quantum Neural Network, where the optimization loop is jitted. Although there's no error, everything is working fine, I find a very unusual behavior in terms of execution times.
Check out the code below:
Setting - 1
import pennylane as qml
from pennylane import numpy as np
import jax
from jax import numpy as jnp
import optax
from itertools import combinations
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import log_loss
import matplotlib.pyplot as plt
import matplotlib.colors
import warnings
warnings.filterwarnings("ignore")
np.random.seed(42)
import time
# Load the digits dataset with features (X_digits) and labels (y_digits)
X_digits, y_digits = load_digits(return_X_y=True)
# Create a boolean mask to filter out only the samples where the label is 2 or 6
filter_mask = np.isin(y_digits, [2, 6])
# Apply the filter mask to the features and labels to keep only the selected digits
X_digits = X_digits[filter_mask]
y_digits = y_digits[filter_mask]
# Split the filtered dataset into training and testing sets with 10% of data reserved for testing
X_train, X_test, y_train, y_test = train_test_split(
X_digits, y_digits, test_size=0.1, random_state=42
)
# Normalize the pixel values in the training and testing data
# Convert each image from a 1D array to an 8x8 2D array, normalize pixel values, and scale them
X_train = np.array([thing.reshape([8, 8]) / 16 * 2 * np.pi for thing in X_train])
X_test = np.array([thing.reshape([8, 8]) / 16 * 2 * np.pi for thing in X_test])
# Adjust the labels to be centered around 0 and scaled to be in the range -1 to 1
# The original labels (2 and 6) are mapped to -1 and 1 respectively
y_train = (y_train - 4) / 2
y_test = (y_test - 4) / 2
def feature_map(features):
# Apply Hadamard gates to all qubits to create an equal superposition state
for i in range(len(features[0])):
qml.Hadamard(i)
# Apply angle embeddings based on the feature values
for i in range(len(features)):
# For odd-indexed features, use Z-rotation in the angle embedding
if i % 2:
qml.AngleEmbedding(features=features[i], wires=range(8), rotation="Z")
# For even-indexed features, use X-rotation in the angle embedding
else:
qml.AngleEmbedding(features=features[i], wires=range(8), rotation="X")
# Define the ansatz (quantum circuit ansatz) for parameterized quantum operations
def ansatz(params):
# Apply RY rotations with the first set of parameters
for i in range(8):
qml.RY(params[i], wires=i)
# Apply CNOT gates with adjacent qubits (cyclically connected) to create entanglement
for i in range(8):
qml.CNOT(wires=[(i - 1) % 8, (i) % 8])
# Apply RY rotations with the second set of parameters
for i in range(8):
qml.RY(params[i + 8], wires=i)
# Apply CNOT gates with qubits in reverse order (cyclically connected)
# to create additional entanglement
for i in range(8):
qml.CNOT(wires=[(8 - 2 - i) % 8, (8 - i - 1) % 8])
dev = qml.device("default.qubit", wires=8)
@qml.qnode(dev)
def circuit(params, features):
feature_map(features)
ansatz(params)
return qml.expval(qml.PauliZ(0))
def variational_classifier(weights, bias, x):
return circuit(weights, x) + bias
def square_loss(labels, predictions):
return np.mean((labels - qml.math.stack(predictions)) ** 2)
def accuracy(labels, predictions):
acc = sum([np.sign(l) == np.sign(p) for l, p in zip(labels, predictions)])
acc = acc / len(labels)
return acc
def cost(params, X, Y):
predictions = [variational_classifier(params["weights"], params["bias"], x) for x in X]
return square_loss(Y, predictions)
def acc(params, X, Y):
predictions = [variational_classifier(params["weights"], params["bias"], x) for x in X]
return accuracy(Y, predictions)
np.random.seed(0)
weights = 0.01 * np.random.randn(16)
bias = jnp.array(0.0)
params = {"weights": weights, "bias": bias}
opt = optax.adam(0.05)
batch_size = 7
num_batch = X_train.shape[0] // batch_size
opt_state = opt.init(params)
X_batched = X_train.reshape([-1, batch_size, 8, 8])
y_batched = y_train.reshape([-1, batch_size])
@jax.jit
def update_step_jit(i, args):
params, opt_state, data, targets, X_test, y_test, X_train, y_train, batch_no, print_training = args
_data = data[batch_no % num_batch]
_targets = targets[batch_no % num_batch]
train_loss, grads = jax.value_and_grad(cost)(params, _data, _targets)
updates, opt_state = opt.update(grads, opt_state)
test_loss, grads = jax.value_and_grad(cost)(params, X_test, y_test)
params = optax.apply_updates(params, updates)
# Print training loss every step if print_training is True
def print_fn():
jax.debug.print("Step: {i}, Train Loss: {train_loss}", i=i, train_loss=train_loss)
jax.debug.print("Step: {i}, Test Loss: {test_loss}", i=i, test_loss=test_loss)
jax.lax.cond((jnp.mod(i, 1) == 0) & print_training, print_fn, lambda: None)
return (params, opt_state, data, targets, X_test, y_test, X_train, y_train, batch_no + 1, print_training)
@jax.jit
def optimization_jit(params, data, targets, X_test, y_test, X_train, y_train, print_training = True):
opt_state = opt.init(params)
args = (params, opt_state, data, targets, X_test, y_test, X_train, y_train, 0, print_training)
(params, _, _, _, _, _, _, _, _, _) = jax.lax.fori_loop(0, 1, update_step_jit, args)
return params
start_time = time.time()
params = optimization_jit(params, X_batched, y_batched, X_test, y_test, X_train, y_train)
print("Training Done! \nTime taken:",time.time() - start_time)
start_time = time.time()
var_train_acc = acc(params, X_train, y_train)
print("Training accuracy: ", var_train_acc)
print("Time taken:",time.time() - start_time)
start_time = time.time()
var_test_acc = acc(params, X_test, y_test)
print("Testing accuracy: ", var_test_acc)
print("Time taken:",time.time() - start_time)
Notice that it is running the jax.lax.fori_loop just 1 time.
For reproducibility, I verified it by running 3 times, and the outputs are as follows,
Output of first run:
Training Done!
Time taken: 66.26599097251892
Step: 0, Train Loss: 1.015419602394104
Step: 0, Test Loss: 1.0022056102752686
Training accuracy: 0.5031055900621118
Time taken: 14.183394193649292
Testing accuracy: 0.5277777777777778
Time taken: 1.552431344985962
Output of second run:
Training Done!
Time taken: 62.8515682220459
Step: 0, Train Loss: 1.015419602394104
Step: 0, Test Loss: 1.0022056102752686
Training accuracy: 0.5031055900621118
Time taken: 13.549866199493408
Testing accuracy: 0.5277777777777778
Time taken: 1.5097148418426514
Output of third run:
Training Done!
Time taken: 63.35235905647278
Step: 0, Train Loss: 1.015419602394104
Step: 0, Test Loss: 1.0022056102752686
Training accuracy: 0.5031055900621118
Time taken: 13.52238941192627
Testing accuracy: 0.5277777777777778
Time taken: 1.5074975490570068
Setting - 2
So, then I ran it changing the jax.lax.fori_loop to run 10 times as
(params, _, _, _, _, _, _, _, _, _) = jax.lax.fori_loop(0, 10, update_step_jit, args)
Surprisingly, the execution time reduces quite significantly, and the outputs are:
First Run:
Training Done!
Time taken: 49.8694589138031
Step: 0, Train Loss: 1.015419602394104
Step: 0, Test Loss: 1.0022056102752686
Step: 1, Train Loss: 0.934578537940979
Step: 1, Test Loss: 0.9935969114303589
Step: 2, Train Loss: 0.982826828956604
Step: 2, Test Loss: 1.004722237586975
Step: 3, Train Loss: 0.982965350151062
Step: 3, Test Loss: 1.0281261205673218
Step: 4, Train Loss: 1.1700845956802368
Step: 4, Test Loss: 1.0455362796783447
Step: 5, Train Loss: 1.3356019258499146
Step: 5, Test Loss: 1.0411475896835327
Step: 6, Train Loss: 1.2408322095870972
Step: 6, Test Loss: 1.0204349756240845
Step: 7, Train Loss: 0.7292405366897583
Step: 7, Test Loss: 0.9959328770637512
Step: 8, Train Loss: 1.1697252988815308
Step: 8, Test Loss: 0.9822244644165039
Step: 9, Train Loss: 1.015731692314148
Step: 9, Test Loss: 0.9667297005653381
Training accuracy: 0.5217391304347826
Time taken: 13.903431177139282
Testing accuracy: 0.5555555555555556
Time taken: 1.537736177444458
Second run:
Training Done!
Time taken: 56.34339928627014
Step: 0, Train Loss: 1.015419602394104
Step: 0, Test Loss: 1.0022056102752686
Step: 1, Train Loss: 0.934578537940979
Step: 1, Test Loss: 0.9935969114303589
Step: 2, Train Loss: 0.982826828956604
Step: 2, Test Loss: 1.004722237586975
Step: 3, Train Loss: 0.982965350151062
Step: 3, Test Loss: 1.0281261205673218
Step: 4, Train Loss: 1.1700845956802368
Step: 4, Test Loss: 1.0455362796783447
Step: 5, Train Loss: 1.3356019258499146
Step: 5, Test Loss: 1.0411475896835327
Step: 6, Train Loss: 1.2408322095870972
Step: 6, Test Loss: 1.0204349756240845
Step: 7, Train Loss: 0.7292405366897583
Step: 7, Test Loss: 0.9959328770637512
Step: 8, Train Loss: 1.1697252988815308
Step: 8, Test Loss: 0.9822244644165039
Step: 9, Train Loss: 1.015731692314148
Step: 9, Test Loss: 0.9667297005653381
Training accuracy: 0.5217391304347826
Time taken: 13.298640727996826
Testing accuracy: 0.5555555555555556
Time taken: 1.4631397724151611
Third run:
Training Done!
Time taken: 53.01019215583801
Step: 0, Train Loss: 1.015419602394104
Step: 0, Test Loss: 1.0022056102752686
Step: 1, Train Loss: 0.934578537940979
Step: 1, Test Loss: 0.9935969114303589
Step: 2, Train Loss: 0.982826828956604
Step: 2, Test Loss: 1.004722237586975
Step: 3, Train Loss: 0.982965350151062
Step: 3, Test Loss: 1.0281261205673218
Step: 4, Train Loss: 1.1700845956802368
Step: 4, Test Loss: 1.0455362796783447
Step: 5, Train Loss: 1.3356019258499146
Step: 5, Test Loss: 1.0411475896835327
Step: 6, Train Loss: 1.2408322095870972
Step: 6, Test Loss: 1.0204349756240845
Step: 7, Train Loss: 0.7292405366897583
Step: 7, Test Loss: 0.9959328770637512
Step: 8, Train Loss: 1.1697252988815308
Step: 8, Test Loss: 0.9822244644165039
Step: 9, Train Loss: 1.015731692314148
Step: 9, Test Loss: 0.9667297005653381
Training accuracy: 0.5217391304347826
Time taken: 13.152780055999756
Testing accuracy: 0.5555555555555556
Time taken: 1.4448845386505127
Setting - 3
Furthermore, I thought of reducing the logging, and wanted to calculate and log the test_loss every 5th step, by updating the code to:
@jax.jit
def update_step_jit(i, args):
params, opt_state, data, targets, X_test, y_test, X_train, y_train, batch_no, print_training = args
_data = data[batch_no % num_batch]
_targets = targets[batch_no % num_batch]
train_loss, grads = jax.value_and_grad(cost)(params, _data, _targets)
updates, opt_state = opt.update(grads, opt_state)
# train_accuracy, grads = jax.value_and_grad(acc)(params, X_train, y_train)
# test_accuracy, grads = jax.value_and_grad(acc)(params, X_test, y_test)
params = optax.apply_updates(params, updates)
# Print training loss every 5 steps if print_training is True
def print_fn():
test_loss, grads = jax.value_and_grad(cost)(params, X_test, y_test)
jax.debug.print("Step: {i}, Train Loss: {train_loss}", i=i, train_loss=train_loss)
# jax.debug.print("Step: {i}, Train Accuracy: {train_accuracy}", i=i, train_accuracy=train_accuracy)
jax.debug.print("Step: {i}, Test Loss: {test_loss}", i=i, test_loss=test_loss)
# jax.debug.print("Step: {i}, Test Accuracy: {test_accuracy}", i=i, test_accuracy=test_accuracy)
jax.lax.cond((jnp.mod(i, 5) == 0) & print_training, print_fn, lambda: None)
return (params, opt_state, data, targets, X_test, y_test, X_train, y_train, batch_no + 1, print_training)
@jax.jit
def optimization_jit(params, data, targets, X_test, y_test, X_train, y_train, print_training = True):
opt_state = opt.init(params)
args = (params, opt_state, data, targets, X_test, y_test, X_train, y_train, 0, print_training)
(params, _, _, _, _, _, _, _, _, _) = jax.lax.fori_loop(0, 10, update_step_jit, args)
return params
I though calling the print_fn fewer times would have resulted in even lesser runtime but no, the outputs were:
First Run:
Training Done!
Time taken: 75.2902774810791
Step: 0, Train Loss: 1.015419602394104
Step: 0, Test Loss: 0.9935969114303589
Step: 5, Train Loss: 1.3356019258499146
Step: 5, Test Loss: 1.0204349756240845
Training accuracy: 0.5217391304347826
Time taken: 13.591582536697388
Testing accuracy: 0.5555555555555556
Time taken: 1.6048238277435303
Second run:
Training Done!
Time taken: 86.21267819404602
Step: 0, Train Loss: 1.015419602394104
Step: 0, Test Loss: 0.9935969114303589
Step: 5, Train Loss: 1.3356019258499146
Step: 5, Test Loss: 1.0204349756240845
Training accuracy: 0.5217391304347826
Time taken: 13.666489601135254
Testing accuracy: 0.5555555555555556
Time taken: 1.5537452697753906
Third run:
Training Done!
Time taken: 90.7916328907013
Step: 0, Train Loss: 1.015419602394104
Step: 0, Test Loss: 0.9935969114303589
Step: 5, Train Loss: 1.3356019258499146
Step: 5, Test Loss: 1.0204349756240845
Training accuracy: 0.5217391304347826
Time taken: 13.21641230583191
Testing accuracy: 0.5555555555555556
Time taken: 1.5349321365356445
The runtimes for the different settings can be plotted as:
My questions are:
- Why is Setting - 1, where the optimization loop is run only once, consistently taking more time than Setting - 2, where the optimization loop is run 10 times?
- Why is Setting - 3, where the
print_fnfunction in the optimization loop is called every 5th optimization step, consistently taking more time than Setting - 2, where theprint_fnis being called on every iteration?
