1

I would appreciate any guidance on correcting my mistakes. I'm attempting to implement the RCPSP model by Pritsker et al. (1969). Link : Here

// Example data
range J = 1..5;
range R = 1..3;
range T = 1..10;
int P[J] = [0,1,2,3,4]; 
int d[J] = [1, 1, 3, 5, 2];
int EF[J] = [1, 2, 1, 1, 1];
int LF[J] = [2, 3, 4, 6, 2];
int Tbar = sum(j in J) d[j];

// Resource usage matrix
int u[J][R] = [[1, 0, 2],
               [1, 1, 1], 
               [1, 1, 0],  
               [2, 0, 3],  
               [1, 1, 2]]; 

// Resource availability
int a[R]= [1,2,3];

// Decision Variables
dvar boolean x[J][T];

dexpr int CT = sum(j in J, t in EF[j]..LF[j])t*x[j][t];
minimize CT;

subject to {
  forall(j in J)
    sum (t in EF[j]..LF[j]) x[j][t] == 1;
  forall(j in J, i in J)
    sum (t in EF[j]..LF[j]) (t - d[j]) * x[j][t] - sum (t in EF[i]..LF[i]) t * x[i][t] >= 0;    
  forall(r in R, t in 1..Tbar) {
    sum(j in J) u[j][r] * sum(q in max(t, EF[j])..min(t + d[j] - 1, LF[j])) x[j][q] <= a[r];
  }
}

1 Answer 1

0

max should be maxl!

If I write

subject to {
  forall(j in J)
    ct1:sum (t in EF[j]..LF[j]) x[j][t] == 0;
  forall(j in J, i in J)
    ct2:sum (t in EF[j]..LF[j]) (t - d[j]) * x[j][t] - sum (t in EF[i]..LF[i]) t * x[i][t] >= 0;    
  forall(r in R, t in 1..Tbar) {
    ct3:sum(j in J) u[j][r] * sum(q in maxl(t, EF[j])..minl(t + d[j] - 1, LF[j])) x[j][q] <= a[r];
  }
}  

then I get a solution

Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.