Why are these two code segments not equivalent: Segment 1: Creating a model with 2 layers.
class FNNModule(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim1, hidden_dim2, non_linear_function):
super().__init__()
self.hidden1 = nn.Linear(input_dim, hidden_dim1)
self.hidden2 = nn.Linear(hidden_dim1, hidden_dim2)
self.non_linear_function = non_linear_function()
self.final_linear = nn.Linear(hidden_dim2, output_dim)
def forward(self, x):
out = self.hidden1(x)
out = self.non_linear_function(out)
out = self.hidden2(x)
out = self.non_linear_function(out)
out = self.final_linear(out)
return out
Segment Two: Creating the same model but changing code where hidden_layers is a variable:
class FNNModuleVar(nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim_array = [], non_linear_function_array=[]):
super().__init__()
self.linear_functions = []
self.non_linear_functions = [x() for x in non_linear_function_array]
self.hidden_layers = len(hidden_dim_array)
for l in range(self.hidden_layers):
self.linear_functions.append(nn.Linear(input_dim, hidden_dim_array[l]))
input_dim = hidden_dim_array[l]
self.final_linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
out = x
for i in range(self.hidden_layers):
out = self.linear_functions[i](out)
out = self.non_linear_functions[i](out)
out = self.final_linear(x)
return out
modelVar = FNNModuleVar(input_dim, output_dim, [100, 50], [nn.Tanh, nn.Tanh])
model = FNNModule(input_dim, output_dim, 100, 50, nn.Tanh)
When I try to iterate through modelVar.parameters() and model.parameters() I see that I have very different models.
What am I doing wrong in modelVar?