4

I recently started using pytorch. I've been using tensorflow framework before. I have a piece of code that I implemented with tensorflow, which I now want to convert to the pytorch version.

I'm new to pytorch and I'm not familiar with its functions and the transformation process is not smooth, so I'd like to consult.

Here's the code I want to convert:

def kl_loss_compute(logits1, logits2):
    """ KL loss
    """
    pred1 = tf.nn.softmax(logits1)
    pred2 = tf.nn.softmax(logits2)
    loss = tf.reduce_mean(tf.reduce_sum(pred2 * tf.log(1e-8 + pred2 / (pred1 + 1e-8)), 1))

    return loss

python: 3.6, ubuntu: 16.04

logits1 and logits2 are FC layer's outputs. Their shape is [batch, n]

1 Answer 1

7

Here is my Implementation (I am taking an example of logits of dimension [3,5]):

Tensorflow Version:

import tensorflow as tf
def kl_loss_compute(logits1, logits2):
    """ KL loss
    """
    pred1 = tf.nn.softmax(logits1)
    print(pred1.eval())
    pred2 = tf.nn.softmax(logits2)
    print(pred2.eval())
    loss = tf.reduce_mean(tf.reduce_sum(pred2 * tf.log(1e-8 + pred2 / (pred1 + 1e-8)), 1))
    return loss

x1 = tf.random.normal([3, 5], dtype=tf.float32)
x2 = tf.random.normal([3, 5], dtype=tf.float32)
with tf.Session() as sess:
    x1 = sess.run(x1)
    print(x1)
    x2 = sess.run(x2)
    print(x2)
    print(30*'=')
    print(sess.run(kl_loss_compute(x1, x2)))

Output:

[[ 0.9801388  -0.2514422  -0.28299806  0.85130763  0.4565948 ]
 [-1.0744809   0.20301117  0.21026622  1.0385195   0.41147012]
 [ 1.2385081   1.1003486  -2.0818367  -1.0446491   1.8817908 ]]
[[ 0.04036871  0.82306993  0.82962424  0.5209219  -0.10473887]
 [ 1.7777447  -0.6257034  -0.68985045 -1.1191329  -0.2600192 ]
 [ 0.03387258  0.44405013  0.08010675  0.9131149   0.6422863 ]]
==============================
[[0.32828477 0.09580362 0.09282765 0.2886025  0.19448158]
 [0.04786159 0.17170973 0.17296004 0.39596024 0.21150835]
 [0.2556382  0.22265059 0.00923886 0.02606533 0.48640704]]
[[0.12704821 0.27790183 0.27972925 0.20543297 0.10988771]
 [0.7349108  0.06644011 0.062312   0.04056362 0.09577343]
 [0.12818882 0.19319147 0.13425465 0.30881628 0.23554876]]
0.96658206

PyTorch Version:

def kl_loss_compute(logits1, logits2):
    """ KL loss
    """
    pred1 = torch.softmax(logits1, dim=-1, dtype=torch.float32)
    print(pred1)
    pred2 = torch.softmax(logits2, dim=-1, dtype=torch.float32)
    print(pred2)
    loss = torch.mean(torch.sum(pred2 * torch.log(1e-8 + pred2 / (pred1 + 1e-8)), -1))
    return loss
# same inputs are used here as above(see the inputs used in tensorflow code in the output)
x = torch.Tensor([[ 0.9801388,  -0.2514422 , -0.28299806 , 0.85130763,  0.4565948 ],
                 [-1.0744809 ,  0.20301117,  0.21026622,  1.0385195,   0.41147012],
                 [ 1.2385081  , 1.1003486,  -2.0818367,  -1.0446491,   1.8817908 ]])
y = torch.Tensor([[ 0.04036871 , 0.82306993,  0.82962424,  0.5209219,  -0.10473887],
                 [ 1.7777447  ,-0.6257034,  -0.68985045, -1.1191329,  -0.2600192 ],
                 [ 0.03387258 , 0.44405013 , 0.08010675,  0.9131149,   0.6422863 ]]) 
print(kl_loss_compute(x, y))

Output:

tensor([[0.3283, 0.0958, 0.0928, 0.2886, 0.1945],
        [0.0479, 0.1717, 0.1730, 0.3960, 0.2115],
        [0.2556, 0.2227, 0.0092, 0.0261, 0.4864]])
tensor([[0.1270, 0.2779, 0.2797, 0.2054, 0.1099],
        [0.7349, 0.0664, 0.0623, 0.0406, 0.0958],
        [0.1282, 0.1932, 0.1343, 0.3088, 0.2355]])
tensor(0.9666)
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.