i have a Pandas DataFrame with the following structure.
Feature 1 | Feature 2 | Feature 3
10 | 200 | True
30 | 233 | False
45 | 344 | True
any idea how i can do normalization for feature 1 and feature 2 only? without changing the index of original DataFrame.
i already try this following code, but it's normalize all columns and change the index of dataframe to 0,1,2
x = df.values
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
dataset = pd.DataFrame(x_scaled)