Consider using pandas.Series.corr in an dataframe apply where you pass each column into a function, here the anonymous lambda, and pair each with the b column:
Random data (seeded to reproduce)
import pandas as pd
import numpy as np
np.random.seed(50)
a = pd.DataFrame({'A':np.random.randn(50),
'B':np.random.randn(50),
'C':np.random.randn(50),
'D':np.random.randn(50),
'E':np.random.randn(50)})
b = pd.DataFrame({'test':np.random.randn(10)})
Reproducing Pearson correlation
pear_result1 = a.ix[:,0:5].corrwith(b.ix[:,0])
print(pear_result1)
# A -0.073506
# B -0.098045
# C 0.166293
# D 0.123491
# E 0.348576
# dtype: float64
pear_result2 = a.apply(lambda col: col.corr(b.ix[:,0], method='pearson'), axis=0)
print(pear_result2)
# A -0.073506
# B -0.098045
# C 0.166293
# D 0.123491
# E 0.348576
# dtype: float64
print(pear_result1 == pear_result2)
# A True
# B True
# C True
# D True
# E True
# dtype: bool
Spearman correlation
spr_result = a.apply(lambda col: col.corr(b.ix[:,0], method='spearman'), axis=0)
print(spr_result)
# A -0.018182
# B -0.103030
# C 0.321212
# D -0.151515
# E 0.321212
# dtype: float64
Spearman coefficient with pvalues
from scipy.stats import spearmanr, pearsonr
# SERIES OF TUPLES (<scipy.stats.stats.SpearmanrResult> class)
spr_all_result = a.apply(lambda col: spearmanr(col, b.ix[:,0]), axis=0)
# SERIES OF FLOATS
spr_corr = a.apply(lambda col: spearmanr(col, b.ix[:,0])[0], axis=0)
spr_pvalues = a.apply(lambda col: spearmanr(col, b.ix[:,0])[1], axis=0)