I modify the FCN net and design a new net,in which I use two ImageData Layer as input param and hope the net produces a picture as output. here is the train_val.prototxt and the deploy.prototxt
the original picture and the label are both gray scale pics and sizes are 224*224. I've trained a caffemodel and use infer.py to use the caffemodel to do a segmentation,but meet the error:
F0505 06:15:08.072602 30713 net.cpp:767] Check failed: target_blobs.size() == source_layer.blobs_size() (2 vs. 1) Incompatible number of blobs for layer conv1
here is the infer.py file:
import numpy as np
from PIL import Image
caffe_root = '/home/zhaimo/'
import sys
sys.path.insert(0, caffe_root + 'caffe-master/python')
import caffe
im = Image.open('/home/zhaimo/fcn-master/data/vessel/test/13.png')
in_ = np.array(im, dtype=np.float32)
#in_ = in_[:,:,::-1]
#in_ -= np.array((104.00698793,116.66876762,122.67891434))
#in_ = in_.transpose((2,0,1))
net = caffe.Net('/home/zhaimo/fcn-master/mo/deploy.prototxt', '/home/zhaimo/fcn-master/mo/snapshot/train/_iter_200000.caffemodel', caffe.TEST)
net.blobs['data'].reshape(1, *in_.shape)
net.blobs['data'].data[...] = in_
net.forward()
out = net.blobs['score'].data[0].argmax(axis=0)
plt.axis('off')
plt.savefig('/home/zhaimo/fcn-master/mo/result/13.png')
how to solve this problem?