396

I have a Pandas DataFrame with one column:

import pandas as pd

df = pd.DataFrame({"teams": [["SF", "NYG"] for _ in range(7)]})

       teams
0  [SF, NYG]
1  [SF, NYG]
2  [SF, NYG]
3  [SF, NYG]
4  [SF, NYG]
5  [SF, NYG]
6  [SF, NYG]

How can split this column of lists into two columns?

Desired result:

  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG
0

13 Answers 13

556

You can use the DataFrame constructor with lists created by to_list:

import pandas as pd

d1 = {'teams': [['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],
                ['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG']]}
df2 = pd.DataFrame(d1)
print (df2)
       teams
0  [SF, NYG]
1  [SF, NYG]
2  [SF, NYG]
3  [SF, NYG]
4  [SF, NYG]
5  [SF, NYG]
6  [SF, NYG]

df2[['team1','team2']] = pd.DataFrame(df2.teams.tolist(), index= df2.index)
print (df2)
       teams team1 team2
0  [SF, NYG]    SF   NYG
1  [SF, NYG]    SF   NYG
2  [SF, NYG]    SF   NYG
3  [SF, NYG]    SF   NYG
4  [SF, NYG]    SF   NYG
5  [SF, NYG]    SF   NYG
6  [SF, NYG]    SF   NYG

And for a new DataFrame:

df3 = pd.DataFrame(df2['teams'].to_list(), columns=['team1','team2'])
print (df3)
  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG

A solution with apply(pd.Series) is very slow:

#7k rows
df2 = pd.concat([df2]*1000).reset_index(drop=True)

In [121]: %timeit df2['teams'].apply(pd.Series)
1.79 s ± 52.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [122]: %timeit pd.DataFrame(df2['teams'].to_list(), columns=['team1','team2'])
1.63 ms ± 54.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Sign up to request clarification or add additional context in comments.

7 Comments

List method will reset index. If you want to keep index, copy index after construct df2 with df1.index = d2.index.
what about : df1.apply(lambda x: x["teams"], result_type="expand",axis=1)
@RoyAssis - Can you test performance? I think it is slow
Seems like the "tolist" method only works when all lists are the same length.
|
126

Much simpler solution:

pd.DataFrame(df2["teams"].to_list(), columns=['team1', 'team2'])

Yields,

  team1 team2
-------------
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG
7    SF   NYG

If you wanted to split a column of delimited strings rather than lists, you could similarly do:

pd.DataFrame(df["teams"].str.split('<delim>', expand=True).values,
             columns=['team1', 'team2'])

3 Comments

what if each list has uneven number of elements?
If you wanted to split a column of delimited strings rather than lists, you could similarly do: df["teams"].str.split('<delim>', expand=True) already returns a DataFrame, so it would probably be simpler to just rename the columns.
Thanks @AMC that did it for me, but as my "list" of UUID's was actually a str pretending to be a list, first I had to apply a lambda to remove square brackets.
80

This solution preserves the index of the df2 DataFrame, unlike any solution that uses tolist():

df3 = df2.teams.apply(pd.Series)
df3.columns = ['team1', 'team2']

Here's the result:

  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG

1 Comment

.apply(pd.Series) is easy to remember and type. Unfortunately, as stated in other answers, it is also very slow for large numbers of observations. If the index to be preserved is easily accessible, preservation using the DataFrame constructor approach is as simple as passing the index argument to the constructor, as seen in other answers. In the middle of a method chain, one workaround is to store an intermediate Series or DataFrame using an assignment expression (Python 3.8+) and then access the index from there.
24

There seems to be a syntactically simpler way, and therefore easier to remember, as opposed to the proposed solutions. I'm assuming that the column is called 'meta' in a dataframe df:

df2 = pd.DataFrame(df['meta'].str.split().values.tolist())

1 Comment

This answer was helpful, and could be paired with this visual demonstration of the technique: youtube.com/watch?v=vPKwm1XZjp8
19

I would like to recommend a more efficient and Pythonic way.

First define the DataFrame as original post:

df = pd.DataFrame({"teams": [["SF", "NYG"] for _ in range(7)]})

My solution:

%%timeit
df['team1'], df['team2'] = zip(*list(df['teams'].values))
>> 761 µs ± 8.35 µs per loop

In comparison, the most upvoted solution:

%%timeit
df[['team1','team2']] = pd.DataFrame(df.teams.tolist(), index=df.index)
df = pd.DataFrame(df['teams'].to_list(), columns=['team1','team2'])
>> 1.31 ms ± 11.2 µs per loop

My solution saves 40% time and is much shorter. The only thing you need to remember is how to unpack and reshape a two-dimension list by using zip(*list).

1 Comment

This df['team1'], df['team2'] = zip(*list(df['teams'].values)) should be the accepted answer. Simple, readable, idiomatic.
13

List comprehension

A simple implementation with list comprehension (my favorite)

df = pd.DataFrame([pd.Series(x) for x in df.teams])
df.columns = ['team_{}'.format(x+1) for x in df.columns]

Timing on output:

CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: 2.71 ms

Output:

team_1    team_2
0    SF    NYG
1    SF    NYG
2    SF    NYG
3    SF    NYG
4    SF    NYG
5    SF    NYG
6    SF    NYG

Comments

11

The previous solutions didn't work for me since I have nan observations in my dataframe. In my case df2[['team1','team2']] = pd.DataFrame(df2.teams.values.tolist(), index= df2.index) yields:

object of type 'float' has no len()

I solve this using a list comprehension. Here is the replicable example:

import pandas as pd
import numpy as np
d1 = {'teams': [['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],
            ['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG']]}
df2 = pd.DataFrame(d1)
df2.loc[2,'teams'] = np.nan
df2.loc[4,'teams'] = np.nan
df2

Output:

        teams
0   [SF, NYG]
1   [SF, NYG]
2   NaN
3   [SF, NYG]
4   NaN
5   [SF, NYG]
6   [SF, NYG]

df2['team1']=np.nan
df2['team2']=np.nan

Solving with a list comprehension,

for i in [0,1]:
    df2['team{}'.format(str(i+1))]=[k[i] if isinstance(k,list) else k for k in df2['teams']]

df2

yields:

    teams   team1   team2
0   [SF, NYG]   SF  NYG
1   [SF, NYG]   SF  NYG
2   NaN        NaN  NaN
3   [SF, NYG]   SF  NYG
4   NaN        NaN  NaN
5   [SF, NYG]   SF  NYG
6   [SF, NYG]   SF  NYG

Comments

7

Here's another solution using df.transform and df.set_index:

>>> from operator import itemgetter
>>> df['teams'].transform({'item1': itemgetter(0), 'item2': itemgetter(1)})

  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG

Which of course can be generalized as:

>>> indices = range(len(df['teams'][0]))

>>> df['teams'].transform({f'team{i+1}': itemgetter(i) for i in indices})

  team1 team2
0    SF   NYG
1    SF   NYG
2    SF   NYG
3    SF   NYG
4    SF   NYG
5    SF   NYG
6    SF   NYG

This approach has the added benefit of extracting the desired indices:

>>> df
                 teams
0  [SF, NYG, XYZ, ABC]
1  [SF, NYG, XYZ, ABC]
2  [SF, NYG, XYZ, ABC]
3  [SF, NYG, XYZ, ABC]
4  [SF, NYG, XYZ, ABC]
5  [SF, NYG, XYZ, ABC]
6  [SF, NYG, XYZ, ABC]

>>> indices = [0, 2]
>>> df['teams'].transform({f'team{i+1}': itemgetter(i) for i in indices})

  team1 team3
0    SF   XYZ
1    SF   XYZ
2    SF   XYZ
3    SF   XYZ
4    SF   XYZ
5    SF   XYZ
6    SF   XYZ

Comments

5

Based on the previous answers, here is another solution which returns the same result as df2.teams.apply(pd.Series) with a much faster run time:

pd.DataFrame([{x: y for x, y in enumerate(item)} for item in df2['teams'].values.tolist()], index=df2.index)

Timings:

In [1]:
import pandas as pd
d1 = {'teams': [['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],
                ['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG'],['SF', 'NYG']]}
df2 = pd.DataFrame(d1)
df2 = pd.concat([df2]*1000).reset_index(drop=True)

In [2]: %timeit df2['teams'].apply(pd.Series)

8.27 s ± 2.73 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [3]: %timeit pd.DataFrame([{x: y for x, y in enumerate(item)} for item in df2['teams'].values.tolist()], index=df2.index)

35.4 ms ± 5.22 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Comments

2

If someone comes here to find a ready-made function, I wrote one.

  • it finds all columns with lists and unfolds them, if columns are not specified;
  • added columns are named as column_name_0, column_name_1, etc.;
  • the columns order is preserved in final dataframe;
  • if strict=True, it checks whether lists in a given column are of equal size.

Improvements and comments are appreciated.

def unfold_columns(df, columns=[], strict=False):
    assert isinstance(columns, list), "Columns should be a list of column names"
    if len(columns) == 0:
        columns = [
            column for column in df.columns 
            if df.applymap(lambda x: isinstance(x, list)).all()[column]
        ]
    else:
        assert(all([(column in df.columns) for column in columns])), \
            "Not all given columns are found in df"
    columns_order = df.columns
    for column_name in columns:
        if df[column_name].apply(lambda x: isinstance(x, list)).all():
            if strict:
                assert len(set(df[column_name].apply(lambda x: len(x)))) == 1, \
                    f"Lists in df['{column_name}'] are not of equal length"
            unfolded = pd.DataFrame(df[column_name].tolist())
            unfolded.columns = [f'{column_name}_{x}' for x in unfolded.columns]
            columns_order = [
                *columns_order[:list(columns_order).index(column_name)], 
                *unfolded.columns, 
                *columns_order[list(columns_order).index(column_name)+1:]
            ]
            df = df.join(unfolded).drop([column_name], axis=1)
    return df[columns_order]

Comments

2

To append two new columns to the existing DataFrame:

df[['team1', 'team2']] = df["teams"].to_list()

Comments

1

Summarizing all the answers. If you need just create new DataFrame with 2 columns

pd.DataFrame(df['teams'].tolist(), columns=['team1', 'team2'], index=df.index)

If you want to assign to the same df, you have several options.

  1. The shortest

    df[['team1', 'team2']] = df['teams'].tolist()

  2. The slowest (don't recommend, it might be 10x time slower or more without any advantages)

    df[['team1', 'team2']] = df['teams'].apply(pd.Series)

  3. And the fastest for some reason (almost 2x faster than first).

    df['team1'], df['team2'] = zip(*df['teams'].tolist())

So I would recommend 1. If you really need speed, you can try 3, but that looks strange and the advantage may disappear in future versions.

Comments

0

you can try to use two times of apply to create new column 'team1' and 'team2' in your df

df = pd.DataFrame({"teams": [["SF", "NYG"] for _ in range(7)]})
df["team1"]=df['teams'].apply(lambda x: x[0]  )
df["team2"]=df['teams'].apply(lambda x: x[1]  )
df

enter image description here

1 Comment

On dataframes that come from a groupby aggregation, this is the only method that worked for me..

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.