46

I have a pandas data frame mydf that has two columns,and both columns are datetime datatypes: mydate and mytime. I want to add three more columns: hour, weekday, and weeknum.

def getH(t): #gives the hour
    return t.hour
def getW(d): #gives the week number
    return d.isocalendar()[1] 
def getD(d): #gives the weekday
    return d.weekday() # 0 for Monday, 6 for Sunday

mydf["hour"] = mydf.apply(lambda row:getH(row["mytime"]), axis=1)
mydf["weekday"] = mydf.apply(lambda row:getD(row["mydate"]), axis=1)
mydf["weeknum"] = mydf.apply(lambda row:getW(row["mydate"]), axis=1)

The snippet works, but it's not computationally efficient as it loops through the data frame at least three times. I would just like to know if there's a faster and/or more optimal way to do this. For example, using zip or merge? If, for example, I just create one function that returns three elements, how should I implement this? To illustrate, the function would be:

def getHWd(d,t):
    return t.hour, d.isocalendar()[1], d.weekday()
1

4 Answers 4

67

Here's on approach to do it using one apply

Say, df is like

In [64]: df
Out[64]:
       mydate     mytime
0  2011-01-01 2011-11-14
1  2011-01-02 2011-11-15
2  2011-01-03 2011-11-16
3  2011-01-04 2011-11-17
4  2011-01-05 2011-11-18
5  2011-01-06 2011-11-19
6  2011-01-07 2011-11-20
7  2011-01-08 2011-11-21
8  2011-01-09 2011-11-22
9  2011-01-10 2011-11-23
10 2011-01-11 2011-11-24
11 2011-01-12 2011-11-25

We'll take the lambda function out to separate line for readability and define it like

In [65]: lambdafunc = lambda x: pd.Series([x['mytime'].hour,
                                           x['mydate'].isocalendar()[1],
                                           x['mydate'].weekday()])

And, apply and store the result to df[['hour', 'weekday', 'weeknum']]

In [66]: df[['hour', 'weekday', 'weeknum']] = df.apply(lambdafunc, axis=1)

And, the output is like

In [67]: df
Out[67]:
       mydate     mytime  hour  weekday  weeknum
0  2011-01-01 2011-11-14     0       52        5
1  2011-01-02 2011-11-15     0       52        6
2  2011-01-03 2011-11-16     0        1        0
3  2011-01-04 2011-11-17     0        1        1
4  2011-01-05 2011-11-18     0        1        2
5  2011-01-06 2011-11-19     0        1        3
6  2011-01-07 2011-11-20     0        1        4
7  2011-01-08 2011-11-21     0        1        5
8  2011-01-09 2011-11-22     0        1        6
9  2011-01-10 2011-11-23     0        2        0
10 2011-01-11 2011-11-24     0        2        1
11 2011-01-12 2011-11-25     0        2        2
Sign up to request clarification or add additional context in comments.

3 Comments

Thanks, John. Looks good. This approach performed faster than the one in the original post. For a data frame with ~500 rows, the average performance for your approach was 0.1446926 seconds, while the original one took 0.15949020 seconds, on the average (10 runs).
lambdafunc = lambda x: -- why not just use def lambdafunc(x): instead? there's not much point in using an anonymous function if you're immediately going to name it.
Very minor correction: column names order on the left hand side of the assignment should read: df[['hour', 'weeknum', 'weekday']] to match columns order returned by lambdafunc
19

To complement John Galt's answer:

Depending on the task that is performed by lambdafunc, you may experience some speedup by storing the result of apply in a new DataFrame and then joining with the original:

lambdafunc = lambda x: pd.Series([x['mytime'].hour,
                                  x['mydate'].isocalendar()[1],
                                  x['mydate'].weekday()])

newcols = df.apply(lambdafunc, axis=1)
newcols.columns = ['hour', 'weekday', 'weeknum']
newdf = df.join(newcols) 

Even if you do not see a speed improvement, I would recommend using the join. You will be able to avoid the (always annoying) SettingWithCopyWarning that may pop up when assigning directly on the columns:

SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

Comments

13

You can do this in a somewhat cleaner method by having the function you apply return a pd.Series with named elements:

def process(row):
    return pd.Series(dict(b=row["a"] * 2, c=row["a"] + 2))


my_df = pd.DataFrame(dict(a=range(10)))
new_df = my_df.join(my_df.apply(process, axis="columns"))

The result is:

   a   b   c
0  0   0   2
1  1   2   3
2  2   4   4
3  3   6   5
4  4   8   6
5  5  10   7
6  6  12   8
7  7  14   9
8  8  16  10
9  9  18  11

Comments

3
def getWd(d):
    d.isocalendar()[1], d.weekday()
def getH(t):
    return t.hour
mydf["hour"] = zip(*df["mytime"].map(getH))
mydf["weekday"], mydf["weeknum"] = zip(*df["mydate"].map(getWd))

1 Comment

Venkat, hi. The snippet returns a TypeError: zip argument #1 must support iteration

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.