Skip to main content

Questions tagged [correlation-functions]

A correlation function is a statistical correlation between random variables at two different points in space, time, or other parameter space, usually as a function of the variable distance between these points. In QFT, field autocorrelation functions are propagators, so use the "propagator" tag, instead.

Filter by
Sorted by
Tagged with
1 vote
0 answers
87 views

On Chapter 7 of Fetter & Walecka, the authors prove Dyson formula for the (imaginary time) propagator $U(t,t_{0}) = e^{H_{0}t_{0}}e^{-H(t_{0}-t)}e^{-H_{0}t}$, where I am ommitting the $\hbar$'s. ...
InMathweTrust's user avatar
1 vote
1 answer
83 views

I'm trying to understand a conceptual point in many-body quantum mechanics and quantum field theory. Starting point: Consider a classical Schrödinger field $\psi(\mathbf r, t)$ with interactions, ...
Michiel's user avatar
  • 310
1 vote
2 answers
166 views

Reading Feynman rules from a Lagrangian is a quite standard procedure. However I have seen papers (for example Appendix A of arXiv:2412.14858) where this is done from the Equations of Motion instead ...
Colin's user avatar
  • 21
9 votes
4 answers
1k views

I have encountered many times the sentence in the title. Either written in books or told by more experienced friends, there seems to be a consensus that "If we know all Green functions of a ...
InMathweTrust's user avatar
2 votes
1 answer
206 views

My book Peskin & Schroeder says on p. 326 that 0-loop & 1-loop order diagrams are: Also 2-loop order diagrams are listed in eq. (10.51) on p. 338: I have no idea what $s$ means in the last ...
RotpRl's user avatar
  • 101
10 votes
1 answer
1k views

Suppose I have a QFT defined by a Lagrangian in Minkowski space and one in Euclidean space related by a Wick Rotation. What sort of objects/properties in general stay the same between either theory; ...
QuantumRingTheory's user avatar
3 votes
1 answer
302 views

Although this looks a very simple question, it has been difficult to find an answer on textbooks since many of them develop the theory of interacting many particles for zero temperature and just ...
MathMath's user avatar
  • 1,367
1 vote
2 answers
169 views

I am learning about Renormalization and I am reading various scripts/ books and online texts. In the wikipedia article with the same name: https://en.wikipedia.org/wiki/Renormalization#...
imbAF's user avatar
  • 2,010
4 votes
2 answers
394 views

For simplicity, consider a quantum field theory with a single quantum field $\phi$. It is well known that if we know all correlation functions of the field $\phi$, that is we know all functions \begin{...
Ishan Deo's user avatar
  • 2,615
3 votes
1 answer
123 views

Is it true that $$ G_{AB}(p^2) = \int d^4x e^{ip\cdot x} \langle 0| T A(x) B(0)| 0 \rangle = \int_0^\infty dM^2 \frac{i}{p^2 - M^2 + i\epsilon}\rho_{AB}(M^2) $$ where $$\rho_{AB}(p^2) = \sum_n \...
Josh Newey's user avatar
  • 1,015
1 vote
2 answers
199 views

I am having trouble to understand how do we define green's function just like that because previously it was just an inverse d'Alembertian and d'Alembertian only depends on 1 variable, however in this ...
Adem Kılıç's user avatar
-1 votes
1 answer
128 views

Consider a collision of a Gaussian with a sharp potential barrier from which it will be both reflected and transmitted with equal probability. Please note: I am not interested in the potential barrier ...
saturn's user avatar
  • 171
1 vote
0 answers
98 views

I've been trying for a while to prove how Peskin and Schroeder come up with formula 7.57 in their book (reported in the image below). But I cannot seem to understand how to derive the result. Moreover ...
Andrea's user avatar
  • 45
2 votes
1 answer
116 views

I'm reading Streater-Wightman's "PCT, Spin and Statistics, and All That," and I've come across a computation that I don't know to justify from the Wightman axioms. Specifically, immediately ...
Shls's user avatar
  • 21
3 votes
0 answers
94 views

I am currently trying to understand the derivation of the LSZ reduction formula showed in the Book "Introduction to Quantum Field Theory" by Peskin and Schroeder. Here eq. (7.36) states: $$ ...
Caspar Kozina's user avatar
2 votes
1 answer
160 views

I am reading section 11.2.3 from the conformal field theory textbook by Di Francesco, et. al. In equation (11.39), I don't see why the second equal sign holds. The equation looks like: $$ \langle \...
baba26's user avatar
  • 712
3 votes
1 answer
553 views

Fact 1 In standard quantum mechanics, expectation values are invariant across different pictures (Schrödinger, Heisenberg, and interaction): \begin{equation} \langle A\rangle=\langle\psi(t)| A|\psi(t)\...
James's user avatar
  • 81
2 votes
1 answer
180 views

When computing the Green's function, in the Heisenberg picture, the Green's function can be written as: \begin{equation} G\left(t_1,t_2\right)=-i \operatorname{Tr}\left(\rho_H(t_0) \left(\psi_{H}(t_1) ...
James's user avatar
  • 81
1 vote
0 answers
58 views

In particle physics, we often encounter correlators $\Pi(q^2)$ which are functions of the squared momentum transfer $q^2$. These functions are real-valued for some $q^2$ below a threshold $M^2$, and ...
Spectree's user avatar
  • 245
1 vote
1 answer
121 views

Consider the associativity of the $\phi_1(z_1) \phi_2(z_2) \phi_3(z_3)$. The operation of the OPE only make sense if two operator $\phi_i(z_i)\phi_j(z_j)$ are within the radius of the convergence, ...
ShoutOutAndCalculate's user avatar
3 votes
1 answer
134 views

I saw this post but it didn't really help me Decoupling of Holomorphic and Anti-holomorphic parts in 2D CFT I am trying to fully understand as to why the holomorpic and anti-holomorphic part decouple. ...
RoTheory73's user avatar
3 votes
1 answer
257 views

I was reading https://arxiv.org/abs/2208.05180, the part about 2-point functions in 2D CFT and im confussed as to why they can just work out the holomorphic part and still get the anti-holomorphic ...
RoTheory73's user avatar
4 votes
1 answer
342 views

In QFT, one can define a contraction between bosonic fields rather simply: \begin{equation}\Delta(x-y)=T(\phi(x)\phi(y))-N(\phi(x)\phi(y))\end{equation} I do not know how to insert the bar notation of ...
Johann Wagner's user avatar
2 votes
2 answers
132 views

In many condensed matter and non-equilibrium contexts, Keldysh Green’s functions are widely used to compute correlation functions when the system is out of equilibrium. However, my motivation for ...
James's user avatar
  • 81
1 vote
0 answers
110 views

The Källén–Lehmann representation says that the two point function of any quantum field theory can be written as an integral over all possible masses of free theory two point functions with fixed mass,...
CBBAM's user avatar
  • 4,852

1
2 3 4 5
22