"Find all generators of $ (\mathbb{Z}_{27})^{\times} $"
My attempt is below.
Since $ (\mathbb{Z}_{n})^{\times} $ is a cyclic if and only if $ n = 1, 2, 4, p^n, 2p^n $, $ (\mathbb{Z}_{27})^{\times} $ is cyclic.
And the order of $ (\mathbb{Z}_{27})^{\times} $ is $ 3^3 - 3^2 = 18 $ by the Euler's phi function.
Thus $ (\mathbb{Z}_{27})^{\times} \cong \mathbb{Z}_{18} \cong \mathbb{Z}_2\times\mathbb{Z}_9 $.
But I don't know how to get the 'all' generators. ('2' seems to be the 'one' generator, since 2 is of order 9 in $\mathbb{Z}_{18}$.)