An exponential variable is absolutely continuous and thus have a density which is a function $f$ that can be used to define the probability that the variable lies in an interval:
$$
\mathbb P(a \leq X \leq b ) = \int_a^b f(x)dx
$$
For absolutely continuous variable, it is more relevant to compute the probability of the variable falling in a given interval rather than computing the probability of the variable being equal to a number because $\mathbb P(X=x)=0$ for any real number $x$.
In the case of an exponential variable with a parameter $\lambda$ we have $f(x) = \lambda e^{-\lambda x} I_{x \geq 0}$.
Thus,
\begin{align*}
\mathbb P(X \leq 2 ) &= \lim_{x \to -\infty} \mathbb P(x \leq X \leq 2) \\
&= \lim_{x \to -\infty} \int_x^2 \lambda e^{-\lambda x} I_{x \geq 0} dx\\
&= \int_{- \infty}^2 \lambda e^{-\lambda x} I_{x \geq 0} dx \\
&= \int_0^2 \lambda e^{-\lambda x}dx \\
&= \lambda \left [ \frac{-1}{\lambda} e^{-\lambda x} \right]_0^2 \\
&= 1-e^{-2 \lambda} \approx 0.865 \ \text{if} \ \lambda = 1
\end{align*}
Note that since $\mathbb P(X=2) = 0$ we have $\mathbb P(X \leq 2 ) = \mathbb P(X<2)$.