I'm trying to join three tables together using Python 2.7 and pandas. My tables look like the ones below:
Table 1
ID | test
1 | ss
2 | sb
3 | sc
Table 2
ID | tested | value1 | Value2 | ID2
1 | a | e | o | 1
1 | axe | ee | e | 1
1 | bce | io | p | 3
2 | bee | kd | … | 2
2 | bdd | a | fff | 3
3 | db | f | yiueie | 2
Table 3
ID2 | type
1 | i
1 | d
1 | h
3 | e
1 | o
2 | ou
2 | oui
3 | op
The code I'm using is below:
import pandas as pd
xl = pd.ExcelFile(r'C:\Users\Joe\Desktop\Project1\xlFiles\test1.xlsx')
xl.sheet_names
df = xl.parse("Sheet1")
df.head()
xl2 = pd.ExcelFile(r'C:\Users\Joe\Desktop\Project1\xlFiles\test2.xlsx')
xl2.sheet_names
df2 = xl2.parse("Sheet1")
df2.head()
xl3 = pd.ExcelFile(r'C:\Users\Joe\Desktop\Project1\xlFiles\test3.xlsx')
xl3.sheet_names
df3 = xl3.parse("Sheet1")
df3.head()
df3 = df3.groupby('ID2')['type'].apply(','.join).reset_index()
s1 = pd.merge(df2, df3, how='left', on=['ID2'])
The code joins Table 3 to table Table 2 how I would like. But, I can't figure out how to group multiple columns to join s1 to Table 1. I need the information from every column in s1 to be added to Table 1, but I only want one row for each ID value (3 rows total). Does anyone know how I would do this?
My expected output, for reference, is below:
ID | test | type | tested | value1 | ID2
1 | ss | i,d,h,o | a,axe,bce | e,ee,io | 1,1,3
2 | sb | ou,oui | bee,bdd | kd,a | 2,3
3 | sc | e,op | db | f | 2
Thanks in advance for the help.