1

I need to write a dataframe to a csv file, for that I've done the following:

..............................................
temp_df = pd.DataFrame(variance.values,df.columns.values)
temp_df.to_csv('var.csv')
...................................

this working fine, but I still need one tiny thing, writing the csv file column wise, adding the columns parameter to to_csv doens't really help:

temp_df.to_csv('var'+tempname+'.csv',columns=df.columns.values )

delivers the following:

KeyError: "None of [['Feature0', 'Feature1', 'Feature2', 'Feature3', 'Feature4', 'Feature5', 'Feature6', 'Feature7', 'Feature8', 'Feature9', 'Feature10', 'Feature11', 'Feature12', 'Feature13', 'Feature14', 'Feature15', 'Feature16', 'Feature17', 'Feature18', 'Feature19', 'Feature20', 'Feature21', 'Feature22', 'Feature23', 'Feature24', 'Feature25', 'Feature26', 'Feature27', 'Feature28', 'Feature29', 'Feature30', 'Feature31', 'Feature32', 'Feature33', 'Feature34', 'Feature35', 'Feature36', 'Feature37', 'Feature38', 'Feature39', 'Feature40', 'Feature41', 'Feature42', 'Feature43', 'Feature44', 'Feature45', 'Feature46', 'Feature47', 'Feature48', 'Feature49', 'Feature50', 'Feature51', 'Feature52', 'Feature53', 'Feature54', 'Feature55', 'Feature56', 'Feature57', 'Feature58', 'Feature59', 'Feature60', 'Feature61', 'Feature62', 'Feature63', 'Feature64', 'Feature65', 'Feature66', 'Feature67', 'Feature68', 'Feature69', 'Feature70', 'Feature71', 'Feature72', 'Feature73', 'Feature74', 'Feature75', 'Feature76', 'Feature77', 'Feature78', 'Feature79', 'Feature80', 'Feature81', 'Feature82', 'Feature83', 'Feature84', 'Feature85', 'Feature86', 'Feature87', 'Feature88', 'Feature89', 'Feature90', 'Feature91', 'Feature92', 'Feature93', 'Feature94', 'Feature95', 'Feature96', 'Feature97', 'Feature98', 'Feature99', 'Feature100', 'Feature101', 'Feature102', 'Feature103', 'Feature104', 'Feature105', 'Feature106', 'Feature107', 'Feature108', 'Feature109', 'Feature110', 'Feature111', 'Feature112', 'Feature113', 'Feature114', 'Feature115', 'Feature116', 'Feature117', 'Feature118', 'Feature119', 'Feature120', 'Feature121', 'Feature122', 'Feature123', 'Feature124', 'Feature125', 'Feature126', 'Feature127', 'Feature128', 'Feature129', 'Feature130', 'Feature131', 'Feature132', 'Feature133', 'Feature134', 'Feature135', 'Feature136', 'Feature137', 'Feature138', 'Feature139', 'Feature140', 'Feature141', 'Feature142', 'Feature143', 'Feature144', 'Feature145', 'Feature146', 'Feature147', 'Feature148', 'Feature149', 'Feature150', 'Feature151', 'Feature152', 'Feature153', 'Feature154', 'Feature155', 'Feature156', 'Feature157', 'Feature158', 'Feature159', 'Feature160', 'Feature161', 'Feature162', 'Feature163', 'Feature164', 'Feature165', 'Feature166', 'Feature167', 'Feature168', 'Feature169', 'Feature170', 'Feature171', 'Feature172', 'Feature173', 'Feature174', 'Feature175', 'Feature176', 'Feature177', 'Feature178', 'Feature179', 'Feature180', 'Feature181', 'Feature182', 'Feature183', 'Feature184', 'Feature185', 'Feature186', 'Feature187', 'Feature188', 'Feature189', 'Feature190', 'Feature191', 'Feature192', 'Feature193', 'Feature194', 'Feature195', 'Feature196', 'Feature197', 'Feature198', 'Feature199', 'Feature200', 'Feature201', 'Feature202', 'Feature203', 'Feature204', 'Feature205', 'Feature206', 'Feature207', 'Feature208', 'Feature209', 'Feature210', 'Feature211', 'Feature212', 'Feature213', 'Feature214', 'Feature215', 'Feature216', 'Feature217', 'Feature218', 'Feature219', 'Feature220', 'Feature221', 'Feature222', 'Feature223', 'Feature224', 'Feature225', 'Feature226', 'Feature227', 'Feature228', 'Feature229', 'Feature230', 'Feature231', 'Feature232', 'Feature233', 'Feature234', 'Feature235', 'Feature236', 'Feature237', 'Feature238', 'Feature239', 'Feature240', 'Feature241', 'Feature242', 'Feature243', 'Feature244', 'Feature245', 'Feature246', 'Feature247', 'Feature248', 'Feature249', 'Feature250', 'Feature251', 'Feature252', 'Feature253', 'Feature254', 'Feature255', 'Feature256', 'Feature257', 'Feature258', 'Feature259', 'Feature260', 'Feature261', 'Feature262', 'Feature263', 'Feature264', 'Feature265', 'Feature266', 'Feature267', 'Feature268', 'Feature269', 'Feature270', 'Feature271', 'Feature272', 'Feature273', 'Feature274', 'Feature275', 'Feature276', 'Feature277', 'Feature278', 'Feature279', 'Feature280', 'Feature281', 'Feature282', 'Feature283', 'Feature284', 'Feature285', 'Feature286', 'Feature287', 'Feature288', 'Feature289', 'Feature290', 'Feature291', 'Feature292', 'Feature293', 'Feature294', 'Feature295', 'Feature296', 'Feature297', 'Feature298', 'Feature299', 'Feature300', 'Feature301', 'Feature302', 'Feature303', 'Feature304', 'Feature305', 'Feature306', 'Feature307', 'Feature308', 'Feature309', 'Feature310', 'Feature311', 'Feature312', 'Feature313', 'Feature314', 'Feature315', 'Feature316', 'Feature317', 'Feature318', 'Feature319', 'Feature320', 'Feature321', 'Feature322', 'Feature323', 'Feature324', 'Feature325', 'Feature326', 'Feature327', 'Feature328', 'Feature329', 'Feature330', 'Feature331', 'Feature332', 'Feature333', 'Feature334', 'Feature335', 'Feature336', 'Feature337', 'Feature338', 'Feature339', 'Feature340', 'Feature341', 'Feature342', 'Feature343', 'Feature344', 'Feature345', 'Feature346', 'Feature347', 'Feature348', 'Feature349', 'Feature350', 'Feature351', 'Feature352', 'Feature353', 'Feature354', 'Feature355', 'Feature356', 'Feature357', 'Feature358', 'Feature359', 'Feature360', 'Feature361', 'Feature362', 'Feature363', 'Feature364', 'Feature365', 'Feature366', 'Feature367', 'Feature368', 'Feature369', 'Feature370', 'Feature371', 'Feature372', 'Feature373', 'Feature374', 'Feature375', 'Feature376', 'Feature377', 'Feature378', 'Feature379', 'Feature380', 'Feature381', 'Feature382', 'Feature383', 'Feature384', 'Feature385', 'Feature386', 'Feature387', 'Feature388', 'Feature389', 'Feature390', 'Feature391', 'Feature392', 'Feature393', 'Feature394', 'Feature395', 'Feature396', 'Feature397', 'Feature398', 'Feature399', 'Feature400', 'Feature401', 'Feature402', 'Feature403', 'Feature404', 'Feature405', 'Feature406', 'Feature407', 'Feature408', 'Feature409', 'Feature410', 'Feature411', 'Feature412', 'Feature413', 'Feature414', 'Feature415', 'Feature416', 'Feature417', 'Feature418', 'Feature419', 'Feature420', 'Feature421', 'Feature422', 'Feature423', 'Feature424', 'Feature425', 'Feature426', 'Feature427', 'Feature428', 'Feature429', 'Feature430', 'Feature431', 'Feature432', 'Feature435', 'Feature436', 'Feature437', 'Feature438', 'Feature439', 'Feature440', 'Feature441', 'Feature442', 'Feature443', 'Feature444', 'Feature445', 'Feature446', 'Feature447', 'Feature448', 'Feature449', 'Feature450', 'Feature451', 'Feature452', 'Feature453', 'Feature454', 'Feature455', 'Feature456', 'Feature457', 'Feature458']] are in the [columns]"

**UDPATE **

the Result now look like :

 1.Column    2.column

Feature0    26657.97061
Feature1    40253.50694
Feature2    3221147446
Feature3    0.027772714
Feature4    5.959388786
Feature5    266.56
Feature6    734.2481633
Feature7    307.363629
Feature8    0.000566779
Feature9    0.000520574
...........

what I want to have is :

1.row     Feature0    Feature1    Feature2    Feature3    Feature5    ........... 
2.row     26657.97061 40253.50694  3221147446 0.027772714 5.959388786  ......
1
  • 1
    What does "writing the csv file column wise" mean? Commented May 5, 2017 at 10:03

1 Answer 1

2
In [129]: df
Out[129]:
       col1          col2
0  Feature0  2.665797e+04
1  Feature1  4.025351e+04
2  Feature2  3.221147e+09
3  Feature3  2.777271e-02
4  Feature4  5.959389e+00
5  Feature5  2.665600e+02
6  Feature6  7.342482e+02
7  Feature7  3.073636e+02
8  Feature8  5.667790e-04
9  Feature9  5.205740e-04

In [130]: df.T
Out[130]:
             0         1            2          3         4         5         6         7            8            9
col1  Feature0  Feature1     Feature2   Feature3  Feature4  Feature5  Feature6  Feature7     Feature8     Feature9
col2     26658   40253.5  3.22115e+09  0.0277727   5.95939    266.56   734.248   307.364  0.000566779  0.000520574

In [131]: df.T.to_csv('d:/temp/out.csv', header=None)

Result (d:/temp/out.csv):

col1,Feature0,Feature1,Feature2,Feature3,Feature4,Feature5,Feature6,Feature7,Feature8,Feature9
col2,26657.97061,40253.50694,3221147446.0,0.027772714,5.959388786,266.56,734.2481633,307.363629,0.000566779,0.000520574
Sign up to request clarification or add additional context in comments.

3 Comments

Sorry but where should I use that ?
@Engine, this how i understood your question - to write one CSV file for each column
No No I need to write one csv with two rows instead of 2 columns

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.