solution supporting different shapes and nans
compare against first element of array-list:
import numpy as np
a = np.arange(3)
b = np.arange(3)
c = np.arange(3)
d = np.arange(4)
lst_eq = [a, b, c]
lst_neq = [a, b, d]
def all_equal(lst):
for arr in lst[1:]:
if not np.array_equal(lst[0], arr, equal_nan=True):
return False
return True
print('all_equal(lst_eq)=', all_equal(lst_eq))
print('all_equal(lst_neq)=', all_equal(lst_neq))
output
all_equal(lst_eq)= True
all_equal(lst_neq)= False
for equal shape and without nan-support
Combine everything into one array, calculate the absolute diff along the new axis and check if the maximum element along the new dimension is equal 0 or lower than some threshold. This should be quite fast.
import numpy as np
a = np.arange(3)
b = np.arange(3)
c = np.arange(3)
d = np.array([0, 1, 3])
lst_eq = [a, b, c]
lst_neq = [a, b, d]
def all_equal(lst, threshold = 0):
arr = np.stack(lst, axis=0)
return np.max(np.abs(np.diff(arr, axis=0))) <= threshold
print('all_equal(lst_eq)=', all_equal(lst_eq))
print('all_equal(lst_neq)=', all_equal(lst_neq))
output
all_equal(lst_eq)= True
all_equal(lst_neq)= False