I am doing an analysis of a dataset with 6 classes, zero based. The dataset is many thousands of items long.
I need two dataframes with classes 0 & 1 for the first data set and 3 & 5 for the second.
I can get 0 & 1 together easily enough:
mnist_01 = mnist.loc[mnist['class']<= 1]
However, I am not sure how to get classes 3 & 5... so what I would like to be able to do is:
mnist_35 = mnist.loc[mnist['class'] == (3 or 5)]
...rather than doing:
mnist_3 = mnist.loc[mnist['class'] == 3]
mnist_5 = mnist.loc[mnist['class'] == 5]
mnist_35 = pd.concat([mnist_3,mnist_5],axis=0)
mnist_345 = mnist.loc[mnist['class'] >= 3]...and thenmnist_35 = mnist_345.loc[mnist['class'] != 4]but that is still somewhat dirty...