On a smaller scale compared to what I need, here's an example of what I'm looking to do:
>>> a
array([[ 21, 22, 23, 24, 25, 26, 27],
[ 56, 57, 58, 59, 60, 61, 62],
[ 14, 15, 16, 17, 18, 19, 20],
[ 7, 8, 9, 1010, 11, 12, 13],
[ 42, 43, 44, 45, 46, 47, 48],
[ 63, 64, 65, 66, 67, 68, 69],
[ 0, 1, 2, 3, 4, 5, 6],
[ 49, 50, 51, 52, 53, 54, 55],
[ 28, 29, 30, 31, 32, 33, 34],
[ 35, 36, 37, 38, 39, 40, 41]])
>>> indices = a.argmax(axis=0)
>>> indices
array([5, 5, 5, 3, 5, 5, 5])
>>> b = np.zeros(a.shape)
>>> b[indices] = 1.0
>>> b # below is the actual output, not what I want
array([[ 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0.],
[ 1., 1., 1., 1., 1., 1., 1.],
[ 0., 0., 0., 0., 0., 0., 0.],
[ 1., 1., 1., 1., 1., 1., 1.],
[ 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0.]])
But what I actually need is:
>>> b
array([[ 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0.],
[ 1., 1., 1., 0., 1., 1., 1.],
[ 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0., 0.]])
Numpy indexing can get extremely complicated and it's a little difficult to put the above into words, so hopefully someone can understand what I'm looking for. Essentially it's to set a 1 wherever there's a max of a column and zero elsewhere. How would I go about doing this?