108

I am trying to create a new DataFrame using only one index from a multi-indexed DataFrame.

                   A         B         C
first second                              
bar   one     0.895717  0.410835 -1.413681
      two     0.805244  0.813850  1.607920
baz   one    -1.206412  0.132003  1.024180
      two     2.565646 -0.827317  0.569605
foo   one     1.431256 -0.076467  0.875906
      two     1.340309 -1.187678 -2.211372
qux   one    -1.170299  1.130127  0.974466
      two    -0.226169 -1.436737 -2.006747

Ideally, I would like something like this:

In: df.ix[level="first"]

and:

Out:

               A         B         C
first                               
bar        0.895717  0.410835 -1.413681
           0.805244  0.813850  1.607920
baz       -1.206412  0.132003  1.024180
           2.565646 -0.827317  0.569605
foo        1.431256 -0.076467  0.875906
           1.340309 -1.187678 -2.211372
qux       -1.170299  1.130127  0.974466
          -0.226169 -1.436737 -2.006747
`

Essentially I want to drop all the other indexes of the multi-index other than level first. Is there an easy way to do this?

1
  • Google brought me here, even though I wanted to get the first level of columns, and not of the index. Anyway: df.columns.levels[0] is what I was looking for. Commented Dec 4, 2024 at 14:12

4 Answers 4

151

One way could be to simply rebind df.index to the desired level of the MultiIndex. You can do this by specifying the label name you want to keep:

df.index = df.index.get_level_values('first')

or use the level's integer value:

df.index = df.index.get_level_values(0)

All other levels of the MultiIndex would disappear here.

Sign up to request clarification or add additional context in comments.

1 Comment

57

The solution is fairly new and uses the df.xs function as

In [88]: df.xs('bar', level='first')
Out[88]:
Second  Third
one     A       -2.315312
        B        0.497769
        C        0.108523
two     A       -0.778303
        B       -1.555389
        C       -2.625022
dtype: float64

Can also do with multiple indices as

In [89]: df.xs(('bar', 'A'), level=('First', 'Third'))
Out[89]:
Second
one   -2.315312
two   -0.778303
dtype: float64

The setup for the examples is below

import pandas as pd
import numpy as np
arrays = [
    np.array(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux']),
    np.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'])
]
index = pd.MultiIndex.from_tuples(list(zip(*arrays)), names=['first', 'second'])
df = pd.DataFrame(np.random.randn(3, 8), index=['A', 'B', 'C'], columns=index)
df.index.names = pd.core.indexes.frozen.FrozenList(['First', 'Second', 'Third'])
df = df.unstack()

Comments

1

I used the get_level_values(0) to get the first level index in a multi index group by to build a dataframe containing the aggregate value and the description dictionary value of the encoded value. I get the index for "airline_enc" values in the group by

def getAirlineByGrouped(grouped,dictGeneric):
    mylist=[]
    for key in grouped.index.get_level_values(0):
        item=dictGeneric.get(key)
        mylist.append(item)
    return mylist

encoder=LabelEncoder()
df['airline_enc']=encoder.fit_transform(df['airline'])

dictAirline=   df[['airline_enc','airline']].set_index('airline_enc').to_dict()
grouped=results.groupby(['airline_enc','rating'])['recommended'].count()

#print(grouped)
airlines=getAirlineByGrouped(grouped, dictAirline['airline'])

result_df=pd.DataFrame({'index': grouped.index.get_level_values(0),'value':grouped.values,'airline':airlines})
result_df.plot(x='airline',y='value')
plt.xticks(rotation=90)

Comments

1

Alternatively you could user the pandas.DataFrame.droplevel method. The only downside in your example would be that your index values are no longer unique:

In: df.droplevel('second')
Out:

                    A           B           C  
  first                                        
  bar        0.895717    0.410835   -1.413681   
  bar        0.805244    0.813850    1.607920   
  baz       -1.206412    0.132003    1.024180   
  baz        2.565646   -0.827317    0.569605  
  foo        1.431256   -0.076467    0.875906  
  foo        1.340309   -1.187678   -2.211372  
  qux       -1.170299    1.130127    0.974466  
  qux       -0.226169   -1.436737   -2.006747  

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.