I'm trying to have the a silimiar plot to the one Wolfram Alpha provides me here to the equation
$24.6347 \left(246.347 x + \sqrt{(246.347 x + 20)^2 + 1} + 20\right)^{-a} =\ 30.2879 \left(-33.6532 x + \sqrt{x (1132.54 x - 20191.9) + 90001} + 300\right)^{-a}$
for $a>0$. This equation however has no closed form solution for x in terms of a so I don't know how to achieve such a plot.
Minimal "Working" Example:
\documentclass[11pt,a4paper]{scrartcl}
\usepackage{pgfplots}
\pgfplotsset{compat=newest}
\begin{document}
\begin{tikzpicture}
\begin{axis}[xlabel=a ,
ylabel = x,
xmin=0, xmax=10,
ymin=0,ymax=1]
\addplot [
domain=0:10,
samples=500,
color=blue,
]
{24.6347*(246.347*x+sqrt((246.347*x+20)^2+1)+20)^(-a)=30.2879*(-33.6532*x+ sqrt(x*(1132.54*x-20191.9)+90001)+300)^(-a)};
%switched the variables because gnuplot requires the variable x as input as far as i know
\end{axis}
\end{tikzpicture}
\end{document}


