Definition. Let $(X,\tau)$ be a topological space and $a,b\in X$. We will say that $a$ and $b$ are connected by a simple chain of open sets if there exists open sets $U_1,U_2,\ldots,U_n$ such that $a\in U_1$ only and $b\in U_n$ only and $U_i\cap U_{j}\ne\emptyset$ iff $|i-j|\le 1$.
Then we know that $(X,\tau)$ is connected iff given any open cover $\mathscr{U}$ of $X$ and any two points $a,b\in X$, there exists a simple chain of open sets of $\mathscr{U}$ connecting $a$ and $b$. (See this for clarification.)
Let $(X,\tau)$ be a topological space and $\mathscr{U}$ be an open cover of $X$. define a relation $\sim_{\mathscr{U}}$ on $X$ as follows, $$a\sim_{\mathscr{U}} b\iff a\ \text{and}\ b\ \text{are connected via a simple chain of open sets from}\ \mathscr{U}$$
Question
Is $\sim_{\mathscr{U}}$ a transitive relation on $X$?