I think that the classical way to sort multiple arrays is the so-called back-to-back approach which uses uses thrust::stable_sort_by_key two times. You need to create a keys vector such that elements within the same array have the same key. For example:
Elements: 10.5 4.3 -2.3 0. 55. 24. 66.
Keys: 0 0 0 1 1 1 1
In this case we have two arrays, the first with 3 elements and the second with 4 elements.
You first need to call thrust::stable_sort_by_key having the matrix values as the keys like
thrust::stable_sort_by_key(d_matrix.begin(),
d_matrix.end(),
d_keys.begin(),
thrust::less<float>());
After that, you have
Elements: -2.3 0 4.3 10.5 24. 55. 66.
Keys: 0 1 0 0 1 1 1
which means that the array elements are ordered, while the keys are not. Then you need a second to call thrust::stable_sort_by_key
thrust::stable_sort_by_key(d_keys.begin(),
d_keys.end(),
d_matrix.begin(),
thrust::less<int>());
so performing a sorting according to the keys. After that step, you have
Elements: -2.3 4.3 10.5 0 24. 55. 66.
Keys: 0 0 0 1 1 1 1
which is the final desired result.
Below, a full working example which considers the following problem: separately order each row of a matrix. This is a particular case in which all the arrays have the same length, but the approach works with arrays having possibly different lengths.
#include <cublas_v2.h>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/generate.h>
#include <thrust/sort.h>
#include <thrust/functional.h>
#include <thrust/random.h>
#include <thrust/sequence.h>
#include <stdio.h>
#include <iostream>
#include "Utilities.cuh"
/**************************************************************/
/* CONVERT LINEAR INDEX TO ROW INDEX - NEEDED FOR APPROACH #1 */
/**************************************************************/
template <typename T>
struct linear_index_to_row_index : public thrust::unary_function<T,T> {
T Ncols; // --- Number of columns
__host__ __device__ linear_index_to_row_index(T Ncols) : Ncols(Ncols) {}
__host__ __device__ T operator()(T i) { return i / Ncols; }
};
/********/
/* MAIN */
/********/
int main()
{
const int Nrows = 5; // --- Number of rows
const int Ncols = 8; // --- Number of columns
// --- Random uniform integer distribution between 10 and 99
thrust::default_random_engine rng;
thrust::uniform_int_distribution<int> dist(10, 99);
// --- Matrix allocation and initialization
thrust::device_vector<float> d_matrix(Nrows * Ncols);
for (size_t i = 0; i < d_matrix.size(); i++) d_matrix[i] = (float)dist(rng);
// --- Print result
printf("Original matrix\n");
for(int i = 0; i < Nrows; i++) {
std::cout << "[ ";
for(int j = 0; j < Ncols; j++)
std::cout << d_matrix[i * Ncols + j] << " ";
std::cout << "]\n";
}
/*************************/
/* BACK-TO-BACK APPROACH */
/*************************/
thrust::device_vector<float> d_keys(Nrows * Ncols);
// --- Generate row indices
thrust::transform(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(Nrows*Ncols),
thrust::make_constant_iterator(Ncols),
d_keys.begin(),
thrust::divides<int>());
// --- Back-to-back approach
thrust::stable_sort_by_key(d_matrix.begin(),
d_matrix.end(),
d_keys.begin(),
thrust::less<float>());
thrust::stable_sort_by_key(d_keys.begin(),
d_keys.end(),
d_matrix.begin(),
thrust::less<int>());
// --- Print result
printf("\n\nSorted matrix\n");
for(int i = 0; i < Nrows; i++) {
std::cout << "[ ";
for(int j = 0; j < Ncols; j++)
std::cout << d_matrix[i * Ncols + j] << " ";
std::cout << "]\n";
}
return 0;
}