Suppose I have the following numpy array:
a = np.array([[1, 1, 0, 0, 1],
[1, 1, 0, 0, 0],
[1, 0, 0, 1, 1],
[1, 1, 0, 0, 0],
[1, 1, 0, 0, 0],
[1, 1, 0, 0, 0],
[0, 0, 0, 1, 0],
[1, 1, 0, 0, 0],
[1, 1, 0, 0, 0],
[1, 1, 1, 0, 1],
[1, 1, 0, 0, 0],
[1, 1, 0, 0, 1],
[1, 1, 0, 0, 0],
[1, 0, 0, 1, 0],
[1, 0, 1, 1, 0]])
I want to select only the rows, where column with index 1 have value 1 and column with index 2 have value 0.
i tried the following:
evidence = {1:1,2:0}
mask = a[:,list(evidence.keys())] == list(evidence.values())
But after that i am stuck. how can I do it in numpy 2-D array?