I have a multidimensional array and a set of scale factors that I want to apply along the first axis:
>>> data.shape, scale_factors.shape
((22, 20, 2048, 2048), (22,))
>>> data * scale_factors
ValueError: operands could not be broadcast together with shapes (22,20,2048,2048) (22,)
I can do this with apply_along_axis, but is there a vectorized way to do this? I found a similar question, but the solution is specific to a 1-D * 2-D operation. The "data" ndarray will not always be the same shape, and won't even always have the same number of dimensions. But the length of the 1-D scale_factors will always be the same as axis 0 of data.
expand_dimstakes a tuple, so you can add a number of trailing dimensions with something like:np.expand_dims(np.arange(5),tuple(range(1,4))). Under the covers,expand_dimsconstructs ashapeand does areshape.