I have a very large array, but I'll use a smaller one to explain.
Given source array X
X = [ [1,1,1,1],
[2,2,2,2],
[3,3,3,3]]
A target array with the same size Y
Y = [ [-1,-1,-1,-1],
[-2,-2,-2,-2],
[-3,-3,-3,-3]]
And an assigment array IDX:
IDX = [ [1,0,0,0],
[0,0,1,0],
[0,1,0,1]]
I want to assign Y to X by IDX - Only assign where IDX==1 In this case, something like:
X[IDX] = Y[IDX]
will result in:
X = [ [-1,1,1,1],
[2,2,-2,2],
[3,-3,3,-3]]
How can this be done efficiently (not a for-loop) in numpy/pandas? Thx
IDX = IDX.astype(bool), and then just do it.np.where(IDX==1, Y,X)useX,Y,IDXas numpy.array