In [156]: arr = np.ones((2, 3))
Replace the range with arange:
In [157]: m, n = np.arange(arr.shape[0]), np.arange(arr.shape[1])
And change the first array to (2,1) shape. A (2,1) array broadcasts with a (3,) to produce a (2,3) result.
In [158]: A = 0.23**2 * np.cos(m[:, None]) * np.sin(n)
In [159]: A
Out[159]:
array([[0. , 0.04451382, 0.04810183],
[0. , 0.02405092, 0.02598953]])
In [160]: arr + A
Out[160]:
array([[1. , 1.04451382, 1.04810183],
[1. , 1.02405092, 1.02598953]])
The meshgrid suggested in the accepted answer does the same thing:
In [161]: np.meshgrid(m, n, sparse=True, indexing="ij")
Out[161]:
[array([[0],
[1]]),
array([[0, 1, 2]])]
This broadcasting may be clearer with:
In [162]: m, n
Out[162]: (array([0, 1]), array([0, 1, 2]))
In [163]: m[:, None] * 10 + n
Out[163]:
array([[ 0, 1, 2],
[10, 11, 12]])
[return x+i for x in lst]But dont know how else you would access elements without a for loop.