How can I reorder using pandas, 40,41,42,43,44 next to 2 ??
Is there any fastest and simple way to do it?
I dont want using type pd["sku_id","primary_category_code","primary_category_1","primary_category_2"...] to reorder...
take so much effort to do that.
For example:
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 sku_id 274 non-null object
1 primary_category_code 274 non-null object
2 primary_category_name_chi 274 non-null object
3 cat_codes 274 non-null object
4 cat_names_chi 274 non-null object
5 name_chi 274 non-null object
6 brand_name_chi 274 non-null object
7 summary_chi 274 non-null object
8 description_en 86 non-null object
9 description_chi 154 non-null object
10 image_urls 274 non-null object
11 creation_time 274 non-null object
12 store_code 274 non-null object
13 original_price 274 non-null float64
14 discount_price 271 non-null float64
15 stock_available 274 non-null int64
16 out_of_stock_since 2 non-null object
17 max_order_quantity 0 non-null float64
18 total_shipped_quantity 232 non-null float64
19 manu_country_chi 274 non-null object
20 height 274 non-null float64
21 length 274 non-null float64
22 width 274 non-null float64
23 dimension_unit 274 non-null object
24 weight 274 non-null float64
25 weight_unit 274 non-null object
26 colors 140 non-null object
27 delivery_mode 274 non-null object
28 pickup_days 274 non-null object
29 num_days_to_be_ready 274 non-null int64
30 online_date 0 non-null float64
31 offline_date 155 non-null object
32 warranty_period 273 non-null float64
33 warranty_period_unit 270 non-null object
34 warranty_supplier_en 270 non-null object
35 warranty_supplier_chi 270 non-null object
36 virtual_store_code 0 non-null float64
37 virtual_store_name_en 0 non-null float64
38 virtual_store_name_chi 0 non-null float64
39 primary_store 274 non-null object
40 primary_category_1 274 non-null object
41 primary_category_2 274 non-null object
42 primary_category_3 274 non-null object
43 primary_category_4 274 non-null object
44 primary_category_5 274 non-null object