please I would like to transform the tags column in the match_event dataframe below
+-------+------------+------------------+--------+-------+-----------+--------+--------------------+----------+--------------------+--------------------+------+
|eventId| eventName| eventSec| id|matchId|matchPeriod|playerId| positions|subEventId| subEventName| tags|teamId|
+-------+------------+------------------+--------+-------+-----------+--------+--------------------+----------+--------------------+--------------------+------+
| 8| Pass| 1.255989999999997|88178642|1694390| 1H| 26010|[[50, 48], [47, 50]]| 85| Simple pass| [[1801]]| 4418|
| 8| Pass|2.3519079999999803|88178643|1694390| 1H| 3682|[[47, 50], [41, 48]]| 85| Simple pass| [[1801]]| 4418|
| 8| Pass|3.2410280000000284|88178644|1694390| 1H| 31528|[[41, 48], [32, 35]]| 85| Simple pass| [[1801]]| 4418|
| 8| Pass| 6.033681000000001|88178645|1694390| 1H| 7855| [[32, 35], [89, 6]]| 83| High pass| [[1802]]| 4418|
| 1| Duel|13.143591000000015|88178646|1694390| 1H| 25437| [[89, 6], [85, 0]]| 12|Ground defending ...| [[702], [1801]]| 4418|
| 1| Duel|14.138041000000044|88178663|1694390| 1H| 83575|[[11, 94], [15, 1...| 11|Ground attacking ...| [[702], [1801]]| 11944|
| 3| Free Kick|27.053005999999982|88178648|1694390| 1H| 7915| [[85, 0], [93, 16]]| 36| Throw in| [[1802]]| 4418|
| 8| Pass| 28.97515999999996|88178667|1694390| 1H| 70090| [[7, 84], [9, 71]]| 82| Head pass| [[1401], [1802]]| 11944|
| 10| Shot| 31.22621700000002|88178649|1694390| 1H| 25437| [[91, 29], [0, 0]]| 100| Shot|[[402], [1401], [...| 4418|
| 9|Save attempt| 32.66416000000004|88178674|1694390| 1H| 83574|[[100, 100], [15,...| 91| Save attempt| [[1203], [1801]]| 11944|
+-------+------------+------------------+--------+-------+-----------+--------+--------------------+----------+--------------------+--------------------+------+
to something like this, that is extracting the last item in the list to a column as seen below
+----+
|tags|
+----+
|1801|
|1801|
|1801|
|1802|
|1801|
|1801|
+----+
the column would be re-attached to the match_event dataframe, maybe using withColumn
I tried the below code
u = match_event[['tags']].rdd
t=u.map(lambda xs: [n for x in xs[-1:] for n in x[-1:]])
tag = spark.createDataFrame(t, ['tag'])
I got this. Was difficult to further implement using withColumn
+------+
| tag|
+------+
|[1801]|
|[1801]|
|[1801]|
|[1802]|
|[1801]|
|[1801]|
|[1802]|
|[1802]|
|[1801]|
|[1801]|
|[1801]|
|[1801]|
|[1302]|
|[1802]|
|[1801]|
|[1802]|
|[1801]|
|[1801]|
|[1801]|
|[1801]|
+------+
Please help. Thanks in advance