Here is another good one:
int_array = np.frompyfunc(int, 2, 1) #Can be used, for example, to add broadcasting to a built-in Python function
int_array(hexArray,16).astype(np.uint32)
If you want to know more about it: https://numpy.org/doc/stable/reference/generated/numpy.frompyfunc.html?highlight=frompyfunc#numpy.frompyfunc
Check out the speed:
import numpy as np
import functools
hexArray = np.array(['ffaa', 'aa91', 'b1f6'])
hexArray = np.tile(hexArray,1000)
def x_test(hexArray):
v = hexArray.view(np.uint32)[::4]
return np.where(v > 64, v - 55, v - 48)
int_array = np.frompyfunc(int, 2, 1)
%timeit -n 100 int_array(hexArray,16).astype(np.uint32)
%timeit -n 100 np.fromiter(map(functools.partial(int, base=16), hexArray),dtype=np.uint32)
%timeit -n 100 [int(value, 16) for value in hexArray]
%timeit -n 100 x_test(hexArray)
print(f'\n\n{int_array(hexArray,16).astype(np.uint32)=}\n{np.fromiter(map(functools.partial(int, base=16), hexArray),dtype=np.uint32)=}\n{[int(value, 16) for value in hexArray][:10]=}\n{x_test(hexArray)=}')
460 µs ± 2.42 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
1.25 ms ± 2.66 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
1.11 ms ± 6.56 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
16.8 µs ± 165 ns per loop (mean ± std. dev. of 7 runs, 100 loops each)
int_array(hexArray,16).astype(np.uint32)=array([65450, 43665, 45558, ..., 65450, 43665, 45558], dtype=uint32)
np.fromiter(map(functools.partial(int, base=16), hexArray),dtype=np.uint32)=array([65450, 43665, 45558, ..., 65450, 43665, 45558], dtype=uint32)
[int(value, 16) for value in hexArray][:10]=[65450, 43665, 45558, 65450, 43665, 45558, 65450, 43665, 45558, 65450]
x_test(hexArray)=array([47, 42, 43, ..., 47, 42, 43], dtype=uint32)
Divakar's answer is the fastest, but, unfortunately, does not work for bigger hex numbers (at least for me)