import numpy as np
import matplotlib.pyplot as plt
import sympy as sym
from ipywidgets.widgets import interact
sym.init_printing(use_latex="mathjax")
x, y, z, t = sym.symbols('x y z t')
We were given a function in class to write as code
\begin{equation}
p_w(z,t)=\frac{1}{\sqrt{\pi \left(1-\exp\left[-2 t\right]\right)}}
\exp\left[-\frac{\left(z-\exp\left[-t\right]\right)^{2}}{1-
\exp\left[-2t\right]}\right]
\end{equation}
which I have written as this
p_w = (1/(sym.sqrt((sym.pi)*(1-(sym.exp(-2*t))))))*(sym.exp((-(z-sym.exp(-t))**2)/(1-sym.exp(-2*t))))
Then find the partial differential equation
∂𝑡𝑝𝑤(𝑧,𝑡)=∂𝑧[𝑧𝑝𝑤(𝑧,𝑡)]+1/2 ∂2𝑧𝑝𝑤(𝑧,𝑡)
which I have written as this:
LHS=sym.diff(p_w,t,1)
#differentiate once with respect to t
RHS=sym.diff(z*p_w,z,1)+((1/2)*(sym.diff(p_w,z,2)))
#now differentiate with respect to z
Now we need to plot it and can only use matplotlib/numpy/sympy libraries.
Plot 𝑝𝑤(𝑧,𝑡) for the three values t=0.1,1,10 in a 𝑝𝑤(𝑧,𝑡) versus z diagram.
Here's what I've got so far:
t_points=[0.1,1,10]
#pw = sym.lambdify(t,p_w)
mytspace=np.linspace(0,10,200)
#myzspace=pw(mytspace)
plt.xlabel("t axis")
plt.ylabel("z axis")
plt.plot(t_array,np.zeros(3),'bs')
I haven't studied multivariable calculus before so I'm a bit lost!

thas been given (as 0.1, 1, and 10) you're only actually plotting with one variable, and your graphs will just be 2D. So just plot as normal but loop over your three values oft.