I noticed the following behaviour exhibited by numpy arrays:
>>> import numpy as np
>>> s = {1,2,3}
>>> l = [1,2,3]
>>> np.array(l)
array([1, 2, 3])
>>> np.array(s)
array({1, 2, 3}, dtype=object)
>>> np.array(l, dtype='int')
array([1, 2, 3])
>>> np.array(l, dtype='int').dtype
dtype('int64')
>>> np.array(s, dtype='int')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: int() argument must be a string, a bytes-like object or a number, not 'set'
There are 2 things to notice:
- Creating an array from a set results in the array
dtypebeingobject - Trying to specify dtype results in an error which suggests that the set is being treated as a single element rather than an iterable.
What am I missing - I don't fully understand which bit of python I'm overlooking. Set is a mutable object much like a list is.
EDIT: tuples work fine:
>>> t = (1,2,3)
>>> np.array(t)
array([1, 2, 3])
>>> np.array(t).dtype
dtype('int64')
np.arraycannot infer which element comes before or after the others. This is why the set ends up being treated as a single element.