I'm using tf.data.experimental.make_csv_dataset to create a dataset from a .csv file. I'm also using tf.keras.layers.DenseFeatures as an input layer of my model.
I'm struggling to create a DenseFeatures layer properly so that it is compatible with my dataset in the case when batch_size parameter of make_csv_dataset is not equal to 1 (in case if batch_size=1 my setup works as expected).
I create DenseFeatures layer using a list of tf.feature_column.numeric_column elements with shape=(my_batch_size,), but it seems like in this case for some reason the input layer expects [my_batch_size,my_batch_size] shape instead of [my_batch_size,1].
With my_batch_size=19 I'm getting the following error when trying to fit the model:
ValueError: Cannot reshape a tensor with 19 elements to shape [19,19] (361 elements) for 'MyModel/Input/MyColumn1/Reshape' (op: 'Reshape') with input shapes: [19,1], [2] and with input
tensors computed as partial shapes: input[1] = [19,19].
If I don't specify shape when creating numeric_column it doesn't work either. I'm getting the following error:
tensorflow.python.framework.errors_impl.InvalidArgumentError: The second input must be a scalar, but it has shape [19]
which assumes that numeric_column expects a scalar but recieves the whole batch in one Tensor.
How do I create an input layer of DenseFeatures so that it accepts the dataset produced by make_csv_dataset(batch_size=my_batch_size)?