I have to run soak tests for longer duration and capture 3 datasets (before the run, in-between the run, after the run), plot them and manually analyze the plots.
All the datasets span across the very large range (0-10^5). So, when I am plotting this data using matplotlib's bar function, the bar for smaller values is too small to be analyzed.
import matplotlib
matplotlib.use('Agg')
import sys,os,argparse,json,string,numpy
from datetime import datetime
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
bx = ('smmpg_b1024k', 'smmpg_b10k', 'smmpg_b11k', 'smmpg_b128', 'smmpg_b128k', 'smmpg_b12k', 'smmpg_b13k', 'smmpg_b14k', 'smmpg_b15k', 'smmpg_b160', 'smmpg_b16k', 'smmpg_b17k', 'smmpg_b18k', 'smmpg_b192', 'smmpg_b192k', 'smmpg_b19k', 'smmpg_b1k', 'smmpg_b20k', 'smmpg_b21k', 'smmpg_b224', 'smmpg_b22k', 'smmpg_b23k', 'smmpg_b24k', 'smmpg_b256', 'smmpg_b256k', 'smmpg_b25k', 'smmpg_b26k', 'smmpg_b27k', 'smmpg_b288', 'smmpg_b28k', 'smmpg_b29k', 'smmpg_b2k', 'smmpg_b30k', 'smmpg_b31k', 'smmpg_b32', 'smmpg_b320', 'smmpg_b320k', 'smmpg_b32k', 'smmpg_b33k', 'smmpg_b34k', 'smmpg_b352', 'smmpg_b35k', 'smmpg_b36k', 'smmpg_b37k', 'smmpg_b384', 'smmpg_b384k', 'smmpg_b38k', 'smmpg_b39k', 'smmpg_b3k', 'smmpg_b40k', 'smmpg_b416', 'smmpg_b41k', 'smmpg_b42k', 'smmpg_b43k', 'smmpg_b448', 'smmpg_b448k', 'smmpg_b44k', 'smmpg_b45k', 'smmpg_b46k', 'smmpg_b47k', 'smmpg_b480', 'smmpg_b48k', 'smmpg_b49k', 'smmpg_b4k', 'smmpg_b50k', 'smmpg_b512', 'smmpg_b512k', 'smmpg_b51k', 'smmpg_b52k', 'smmpg_b53k', 'smmpg_b544', 'smmpg_b54k', 'smmpg_b55k', 'smmpg_b56k', 'smmpg_b576', 'smmpg_b576k', 'smmpg_b57k', 'smmpg_b58k', 'smmpg_b59k', 'smmpg_b5k', 'smmpg_b608', 'smmpg_b60k', 'smmpg_b61k', 'smmpg_b62k', 'smmpg_b63k', 'smmpg_b64', 'smmpg_b640', 'smmpg_b640k', 'smmpg_b64k', 'smmpg_b672', 'smmpg_b6k', 'smmpg_b704', 'smmpg_b704k', 'smmpg_b736', 'smmpg_b768', 'smmpg_b768k', 'smmpg_b7k', 'smmpg_b800', 'smmpg_b832', 'smmpg_b832k', 'smmpg_b864', 'smmpg_b896', 'smmpg_b896k', 'smmpg_b8k', 'smmpg_b928', 'smmpg_b96', 'smmpg_b960', 'smmpg_b960k', 'smmpg_b992', 'smmpg_b9k', 'smmpg_ccb', 'smmpg_msb', 'smmpg_twomb', 'total-pages', 'total-size')
before = (0.0, 2.0, 2.0, 4.0, 8.0, 2.0, 2.0, 2.0, 2.0, 6.0, 2.0, 4.0, 44.0, 76.0, 6.0, 2.0, 2.0, 2.0, 18.0, 2.0, 18.0, 30.0, 32.0, 2.0, 12.0, 2.0, 170.0, 0.0, 4.0, 2.0, 0.0, 24.0, 0.0, 2.0, 10.0, 2.0, 12.0, 2.0, 36.0, 0.0, 2.0, 0.0, 0.0, 0.0, 12.0, 22.0, 2.0, 0.0, 272.0, 2.0, 4.0, 2.0, 0.0, 2.0, 4.0, 2.0, 0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 4.0, 0.0, 2.0, 2.0, 2.0, 0.0, 0.0, 8.0, 2.0, 0.0, 2.0, 2.0, 6.0, 0.0, 0.0, 0.0, 34.0, 2.0, 0.0, 2.0, 0.0, 2.0, 92.0, 2.0, 0.0, 2.0, 2.0, 40.0, 2.0, 0.0, 2.0, 2.0, 0.0, 14.0, 2.0, 4.0, 2.0, 2.0, 2.0, 0.0, 18.0, 2.0, 28.0, 4.0, 0.0, 2.0, 2.0, 6.0, 214.0, 26226.0, 13813.0, 27626.0)
intermediate = (0.0, 2.0, 2.0, 4.0, 8.0, 2.0, 2.0, 2.0, 2.0, 6.0, 2.0, 4.0, 44.0, 76.0, 6.0, 2.0, 2.0, 2.0, 18.0, 2.0, 18.0, 30.0, 32.0, 2.0, 12.0, 2.0, 170.0, 0.0, 4.0, 2.0, 0.0, 24.0, 0.0, 2.0, 10.0, 2.0, 12.0, 2.0, 36.0, 0.0, 2.0, 0.0, 0.0, 0.0, 12.0, 22.0, 2.0, 0.0, 272.0, 2.0, 4.0, 2.0, 0.0, 2.0, 4.0, 2.0, 0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 4.0, 0.0, 2.0, 2.0, 2.0, 0.0, 0.0, 8.0, 2.0, 0.0, 2.0, 2.0, 6.0, 0.0, 0.0, 0.0, 34.0, 2.0, 0.0, 2.0, 0.0, 2.0, 92.0, 2.0, 0.0, 2.0, 2.0, 40.0, 2.0, 0.0, 2.0, 2.0, 0.0, 14.0, 2.0, 4.0, 2.0, 2.0, 2.0, 0.0, 18.0, 2.0, 28.0, 4.0, 0.0, 2.0, 2.0, 6.0, 214.0, 26226.0, 13813.0, 27626.0)
after = (0.0, 2.0, 2.0, 4.0, 8.0, 2.0, 2.0, 2.0, 2.0, 6.0, 2.0, 4.0, 44.0, 76.0, 6.0, 2.0, 2.0, 2.0, 18.0, 2.0, 18.0, 30.0, 32.0, 2.0, 12.0, 2.0, 170.0, 0.0, 4.0, 2.0, 0.0, 24.0, 0.0, 2.0, 10.0, 2.0, 12.0, 2.0, 36.0, 0.0, 2.0, 0.0, 0.0, 0.0, 12.0, 22.0, 2.0, 0.0, 272.0, 2.0, 4.0, 2.0, 0.0, 2.0, 4.0, 2.0, 0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 0.0, 4.0, 0.0, 2.0, 2.0, 2.0, 0.0, 0.0, 8.0, 2.0, 0.0, 2.0, 2.0, 6.0, 0.0, 0.0, 0.0, 34.0, 2.0, 0.0, 2.0, 0.0, 2.0, 92.0, 2.0, 0.0, 2.0, 2.0, 40.0, 2.0, 0.0, 2.0, 2.0, 0.0, 14.0, 2.0, 4.0, 2.0, 2.0, 2.0, 0.0, 18.0, 2.0, 28.0, 4.0, 0.0, 2.0, 2.0, 6.0, 214.0, 26226.0, 13813.0, 27626.0)
x_locations= numpy.arange(len(bx))
width=0.27
fig = plt.figure(figsize=(50, 20))
ax = fig.add_subplot(111)
before_test_mempools_bar = ax.bar(x_locations, list(before), width, color='r')
intermediate_test_mempools_bar = ax.bar(x_locations + width, list(intermediate), width, color='g')
after_test_mempools_bar = ax.bar(x_locations + width *2,list(after), width, color='b')
ax.set_ylabel('Memory')
ax.set_xticks(x_locations + width)
ax.set_xticklabels(bx,rotation=90)
ax.legend((before_test_mempools_bar[0],intermediate_test_mempools_bar[0],after_test_mempools_bar[0]),('BEFORE','INTERMEDIATE','AFTER'))
fig.savefig("plot.png")
plt.close()
The above code produces the following plot:

Goal: My goal is to accommodate all the data in the plot that is visually nice and so the plot can be analyzed by any tester in the team. Currently, it's hard to see what's happened with a smaller range of values.
One possible approach would be normalization but not sure if the data would be retained original. Any possible solutions are appreciated.


plot()usesemilogy(): matplotlib.org/api/_as_gen/matplotlib.pyplot.semilogy.html. You can change the base depending on what the dynamic range you need to display is.