some strange things are happening while I try to convert an numpy array to a tuple.
code:
data_block = np.append(training_values, target_value) # merge
print('data_block: ', data_block)
data_block = tuple(data_block)
print('data_block tuple: ', data_block)
output:
data_block: [ 0.03478261 0.00869565 0.03478261 0.07826087 0.05217391 0.07826087 0.14782609]
data_block tuple: (0.034782608695652174, 0.0086956521739130436, 0.034782608695652174, 0.078260869565217397, 0.052173913043478258, 0.078260869565217397, 0.14782608695652172)
Can someone explain to me what is happening?
This is part of a function that tries to create data that can be used for supervised learning out of a time series. Goal is to create a pandas data frame. The function itself is not finished yet and contains errors, but I want to post it here for more context.
def series_to_supervised(data_list, look_back=1, look_forward=0):
print(look_back)
data, labels = [], []
for i in range(len(data_list) - look_back):
training_values = data_list[i:(i + look_back)]
target_value = data_list[i + look_back + look_forward]
print('target_value: ', target_value)
data_block = np.append(training_values, target_value) # merge
data_block = tuple(data_block)
data = np.append(data, data_block) # add to data as tuple
for i in range(look_back):
labels.append("lb_" + str(i))
labels.append("target_value")
print(labels)
df = pandas.DataFrame(data=data)
return df