How do I calculate the mean for each of the below workerid's? Below is my sample NumPy ndarray. Column 0 is the workerid, column 1 is the latitude, and column 2 is the longitude.
I want to calculate the mean latitude and longitude for each workerid. I want to keep this all using NumPy (ndarray), without converting to Pandas.
import numpy
from scipy.spatial.distance import cdist, euclidean
import itertools
from itertools import groupby
class WorkerPatientScores:
'''
I read from the Patient and Worker tables in SchedulingOptimization.
'''
def __init__(self, dist_weight=1):
self.a = []
self.a = ([[25302, 32.133598100000000, -94.395845200000000],
[25302, 32.145095132560200, -94.358041585705600],
[25302, 32.160400000000000, -94.330700000000000],
[25305, 32.133598100000000, -94.395845200000000],
[25305, 32.115095132560200, -94.358041585705600],
[25305, 32.110400000000000, -94.330700000000000],
[25326, 32.123598100000000, -94.395845200000000],
[25326, 32.125095132560200, -94.358041585705600],
[25326, 32.120400000000000, -94.330700000000000],
[25341, 32.173598100000000, -94.395845200000000],
[25341, 32.175095132560200, -94.358041585705600],
[25341, 32.170400000000000, -94.330700000000000],
[25376, 32.153598100000000, -94.395845200000000],
[25376, 32.155095132560200, -94.358041585705600],
[25376, 32.150400000000000, -94.330700000000000]])
ndarray = numpy.array(self.a)
ndlist = ndarray.tolist()
geo_tuple = [(p[1], p[2]) for p in ndlist]
nd1 = numpy.array(geo_tuple)
mean_tuple = numpy.mean(nd1, 0)
print(mean_tuple)
The output of above is:
[ 32.14303108 -94.36152893]