0

For my research I want to be able to quickly produce multiple graphs of a particular kind, but with slightly different data (e.g. different dates or different sensors). I'm trying to write a function that produces a graph using a few mandatory arguments and up to 20 optional arguments. I want this function to: 1) be able to produce a nice graph when I give it just one sensor as well as when I give it 10 sensors. 2) Show only the desired time between starttime and endtime
The code I have so far is:

import numpy as np
import pvlib as pvl
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

def temp1_multiple_days(startdatetime, enddatetime, index, temp1, label1, windowtitle = 'Temperatures over time'):
    d = {'index':index, 'temp1': temp1}
    frame = pd.DataFrame(data = d)
    frame.set_index([index], inplace = True)
    frame = frame[startdatetime:enddatetime]  #slicing right dates out of large dataset
    fig, ax1 = plt.subplots()
    fig.canvas.set_window_title(windowtitle) 
    ax1.plot(frame.index, frame.temp1, label = label1)
    ax1.xaxis.set_major_formatter(mdates.DateFormatter("%d-%b-'%y"))
    ax1.xaxis.set_major_locator(mdates.DayLocator())
    ax1.set_xlim(startdatetime, enddatetime)
    ax1.set_ylabel('Temperature (°C)')
    ax1.legend(loc=1)
    fig.tight_layout
    fig.autofmt_xdate()
    plt.grid(True)
    plt.show

This produces the desired results if I give it 1 sensor. For more sensors, I create a new function. So now I have defined 10 functions, with this being number 10:

def temp10_multiple_days(startdatetime, enddatetime, index, temp1, label1, temp2, label2, temp3, label3, temp4, label4, temp5, label5, temp6, label6, temp7, label7, temp8, label8, temp9, label9, temp10, label10, windowtitle = 'Temperatures over time'):
    d = {'index':index, 'temp1': temp1, 'temp2': temp2, 'temp3': temp3, 'temp4': temp4, 'temp5': temp5, 'temp6': temp6, 'temp7': temp7, 'temp8': temp8, 'temp9': temp9, 'temp10': temp10}
    frame = pd.DataFrame(data = d)
    frame.set_index([index], inplace = True)
    frame = frame[startdatetime:enddatetime]    #slicing right dates out of large dataset
    fig, ax1 = plt.subplots()
    fig.canvas.set_window_title(windowtitle) 
    ax1.plot(frame.index, frame.temp1, label = label1)
    ax1.plot(frame.index, frame.temp2, label = label2)
    ax1.plot(frame.index, frame.temp3, label = label3)
    ax1.plot(frame.index, frame.temp4, label = label4)
    ax1.plot(frame.index, frame.temp5, label = label5)
    ax1.plot(frame.index, frame.temp6, label = label6)
    ax1.plot(frame.index, frame.temp7, label = label7)
    ax1.plot(frame.index, frame.temp8, label = label8)
    ax1.plot(frame.index, frame.temp9, label = label9)
    ax1.plot(frame.index, frame.temp10, label = label10)
    ax1.xaxis.set_major_formatter(mdates.DateFormatter("%d-%b-'%y"))
    ax1.xaxis.set_major_locator(mdates.DayLocator())
    ax1.set_xlim(startdatetime, enddatetime)
    ax1.set_ylabel('Temperature (°C)')
    ax1.legend(loc=1)
    fig.tight_layout
    fig.autofmt_xdate()
    plt.grid(True)
    plt.show

Now my question is: How do I make this into one function that can take 20 or more optional arguments?

2

3 Answers 3

1

Probably the easiest way is to just pass a list of temp-label pairs.

def temp10_multiple_days(startdatetime, enddatetime, index, temp_label_pairs,
                         windowtitle = 'Temperatures over time'):

    for (temp, label) in temp_label_pairs:
        ax.plot(frame.index, temp, label)
Sign up to request clarification or add additional context in comments.

1 Comment

I'm trying to get this to work, but I can't figure out how to format it so that the slicing of the local dataframe happens correctly.
0

You could use an *args parameter (you can call it *temps or whatever - the * is the important part). A parameter with * accepts an arbitrary number of positional arguments and you can loop over them as a list. Since you also need a label for each, you could expect each parameter to be a tuple (value, "label").

For example, within your function, instead of having to define a function for each possible amount of parameters:

def multiple_days(startdatetime, enddatetime, index, *temps, windowtitle = "Temperatures over time'):
    # ...
    for temp in temps:
        ax1.plot(frame.index, frame.temp[0], label = temp[1])
    # ...

Or you could of course do the same with a keyword argument **temps accepting a list of tuples, if you want to call the function by explicitly specifying where the temps are given.

1 Comment

I don't have much experience with pandas or matplotlib yet, but I've found this, I wonder if it solves your problem: stackoverflow.com/questions/16175874/…
0

I found the answer to the slicing/truncate problem. I input the whole dataframe (which has all sensors) into the function. The whole frame is then sliced locally. Columns with sensors are then retrieved as a string.

def temp_multiple_days(df, startdatetime, enddatetime, *temps, windowtitle = 'Temperatures over time'):
df = df.truncate(startdatetime, enddatetime)
fig, ax1 = plt.subplots()
fig.canvas.set_window_title(windowtitle) 
for (temp, label) in temps:
    ax1.plot(df.index, df[temp], label = label)
ax1.xaxis.set_major_formatter(mdates.DateFormatter("%d-%b-'%y"))
ax1.xaxis.set_major_locator(mdates.DayLocator())
ax1.set_xlim(startdatetime, enddatetime)
ax1.set_ylabel('Temperature (°C)')
ax1.legend(loc=1)
fig.tight_layout
fig.autofmt_xdate()
plt.grid(True)
plt.show     
# i then call to the function in this way:
temp_multiple_days(df, '2018-04-21 00:00:00', '2018-04-27 23:59:59', ('name of sensor 1', 'graph label 1'), ('name of sensor 2', 'graph label 2'), windowtitle= 'A nice title')

Thanks for the help!

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.