Aha! It's because Random implements __len__:
In [1]: from sklearn.ensemble import RandomForestClassifier
...: from sklearn.neighbors import KNeighborsClassifier
...:
In [2]: knn = KNeighborsClassifier(4)
In [3]: forest = RandomForestClassifier(n_estimators=10, max_depth=4)
In [4]: knn.__bool__
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-4-ef1cfe16be77> in <module>()
----> 1 knn.__bool__
AttributeError: 'KNeighborsClassifier' object has no attribute '__bool__'
In [5]: knn.__len__
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-5-dc98bf8c50e0> in <module>()
----> 1 knn.__len__
AttributeError: 'KNeighborsClassifier' object has no attribute '__len__'
In [6]: forest.__bool__
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-6-fbdd7f01e843> in <module>()
----> 1 forest.__bool__
AttributeError: 'RandomForestClassifier' object has no attribute '__bool__'
In [7]: forest.__len__
Out[7]:
<bound method BaseEnsemble.__len__ of RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=4, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False)>
In [8]: len(forest)
Out[8]: 0
And, according to the Python Data Model:
object.__bool__(self)
Called to implement truth value testing and the built-in operation
bool(); should return False or True. When this method is not defined,
__len__() is called, if it is defined, and the object is considered true if its result is nonzero. If a class defines neither __len__()
nor __bool__(), all its instances are considered true.
As one might expect, the len of a RandomForestClassifier is the number of estimators, but only after it is .fit:
In [9]: from sklearn.datasets import make_classification
...: X, y = make_classification(n_samples=1000, n_features=4,
...: n_informative=2, n_redundant=0,
...: random_state=0, shuffle=False)
...:
In [10]: X.shape
Out[10]: (1000, 4)
In [11]: y.shape
Out[11]: (1000,)
In [12]: forest.fit(X,y)
Out[12]:
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=4, max_features='auto', max_leaf_nodes=None,
min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
verbose=0, warm_start=False)
In [13]: len(forest)
Out[13]: 10
RandomForestClassifierimplementing__len__