I have been creating a project to optimize an aircraft shape for lowest drag, and have been running into two problems, one occurs with a constraint applied and received the following error
File "/home/name/Desktop/x1ac3opt.py", line 202, in <module>
top.setup()
File "/usr/local/lib/python2.7/dist-packages/openmdao/core/problem.py", line 498, in setup
connections = self._setup_connections(params_dict, unknowns_dict)
File "/usr/local/lib/python2.7/dist-packages/openmdao/core/problem.py", line 197, in _setup_connections
connections = self.root._get_explicit_connections()
File "/usr/local/lib/python2.7/dist-packages/openmdao/core/group.py", line 685, in _get_explicit_connections
(src, tgt, tgt))
NameError: Source 'p.Sp1' cannot be connected to target 'con.Sp1': 'con.Sp1' does not exist.
and this occurs with the constraints quoted out `
File "/home/name/Desktop/x1ac3opt.py", line 63, in solve_nonlinear
unknowns['Cdi'] = (324/((7750)*(m.pi)*(((Sp1+Sp2+Sp3+Sp4+Sp5)**2)/(Sp1*(Rc+Tc1)/2+Sp2*(Tc1+Tc2)/2+Sp3*(Tc2+Tc3)/2+Sp4*(Tc3+Tc4)/2+Sp5*(Tc4+Tc5)/2))))
File "/usr/local/lib/python2.7/dist-packages/openmdao/core/vec_wrapper.py", line 435, in __setitem__
self._dat[name].set(value)
File "/usr/local/lib/python2.7/dist-packages/openmdao/core/vec_wrapper.py", line 313, in _set_scalar
self.val[0] = value
ValueError: setting an array element with a sequence.
`
any ideas on why this is happening?
EDIT: here is the entireity of the code
`# For printing, use this import if you are running Python 2.x from future import print_function
import math as m
from openmdao.api import IndepVarComp, Component, Problem, Group, ExecComp, ScipyOptimizer, SqliteRecorder
class Outershell(Component): """Component containing Outershell."""
def __init__(self):
super(Outershell, self).__init__()
self.add_param('Sp1', val=23) #Sec1Span
self.add_param('Sp2', val=13) #Sec2Span
self.add_param('Sp3', val=20) #Sec3Span
self.add_param('Sp4', val=35) #Sec4Span
self.add_param('Sp5', val=35) #Sec5Span
self.add_param('Sw1', val=60) #Sec1Sweep
self.add_param('Sw2', val=60) #Sec2sweep
self.add_param('Sw3', val=50) #Sec3sweep
self.add_param('Sw4', val=37) #Sec4sweep
self.add_param('Sw5', val=35) #Sec5sweep
self.add_param('Rc', val=130) #Sec1RC
self.add_param('Tc1', val=90) #Sec1TC
self.add_param('Tc2', val=66) #Sec2TC
self.add_param('Tc3', val=42) #Sec3TC
self.add_param('Tc4', val=24) #Sec4TC
self.add_param('Tc5', val=10) #Sec5TC
self.add_output('Cdi', shape=1) #Objective output as low as possible
def solve_nonlinear(self, params, unknowns, resids):
#0.0324 and 0.775 are the squared Cl and the oswald efficiency number in the case that I can find a way to add in those values to the optimization problem
Sp1 = params['Sp1']
Sp2 = params['Sp2']
Sp3 = params['Sp3']
Sp4 = params['Sp4']
Sp5 = params['Sp5']
Sw1 = params['Sw1']
Sw2 = params['Sw2']
Sw3 = params['Sw3']
Sw4 = params['Sw4']
Sw5 = params['Sw5']
Rc = params['Rc']
Tc1 = params['Tc1']
Tc2 = params['Tc2']
Tc3 = params['Tc3']
Tc4 = params['Tc4']
Tc5 = params['Tc5']
unknowns['Cdi'] = (324/((7750)*(m.pi)*(((Sp1+Sp2+Sp3+Sp4+Sp5)**2)/(Sp1*(Rc+Tc1)/2+Sp2*(Tc1+Tc2)/2+Sp3*(Tc2+Tc3)/2+Sp4*(Tc3+Tc4)/2+Sp5*(Tc4+Tc5)/2))))
def linearize(self, params, unknowns, resids):
Sp1 = params['Sp1']
Sp2 = params['Sp2']
Sp3 = params['Sp3']
Sp4 = params['Sp4']
Sp5 = params['Sp5']
sw1 = params['Sw1']
sw2 = params['Sw2']
sw3 = params['Sw3']
sw4 = params['Sw4']
sw5 = params['Sw5']
Rc = params['Rc']
Tc1 = params['Tc1']
Tc2 = params['Tc2']
Tc3 = params['Tc3']
Tc4 = params['Tc4']
Tc5 = params['Tc5']
J ={}
J['Cdi', 'Sp1']=unknowns['Cdi']/Sp1
J['Cdi', 'Sp2']=unknowns['Cdi']/Sp2
J['Cdi', 'Sp3']=unknowns['Cdi']/Sp3
J['Cdi', 'Sp4']=unknowns['Cdi']/Sp4
J['Cdi', 'Sp5']=unknowns['Cdi']/Sp5
J['Cdi', 'Sw1']=unknowns['Cdi']/sw1
J['Cdi', 'Sw2']=unknowns['Cdi']/sw2
J['Cdi', 'Sw3']=unknowns['Cdi']/sw3
J['Cdi', 'Sw4']=unknowns['Cdi']/sw4
J['Cdi', 'Sw5']=unknowns['Cdi']/sw5
J['Cdi', 'Tc1']=unknowns['Cdi']/Tc1
J['Cdi', 'Tc2']=unknowns['Cdi']/Tc2
J['Cdi', 'Tc3']=unknowns['Cdi']/Tc3
J['Cdi', 'Tc4']=unknowns['Cdi']/Tc4
J['Cdi', 'Tc5']=unknowns['Cdi']/Tc5
J['Cdi', 'Rc']=unknowns['Cdi']/Rc
if __name__ == "__main__":
top = Problem()
root = top.root = Group()
root.add('p1', IndepVarComp('Sp1', 23))
root.add('p2', IndepVarComp('Sp2', 13))
root.add('p3', IndepVarComp('Sp3', 20))
root.add('p4', IndepVarComp('Sp4', 35))
root.add('p5', IndepVarComp('Sp5', 35))
root.add('p6', IndepVarComp('Sw1', 60))
root.add('p7', IndepVarComp('Sw2', 60))
root.add('p8', IndepVarComp('Sw3', 50))
root.add('p9', IndepVarComp('Sw4', 37))
root.add('p10', IndepVarComp('Sw5', 35))
root.add('p11', IndepVarComp('Tc1', 90))
root.add('p12', IndepVarComp('Tc2', 66))
root.add('p13', IndepVarComp('Tc3', 42))
root.add('p14', IndepVarComp('Tc4', 24))
root.add('p15', IndepVarComp('Tc5', 10))
root.add('p16', IndepVarComp('Rc', 130))
root.add('p', Outershell())
root.add('con', ExecComp('L = (15067/100000000)/(Sp1(Rc+Tc1)/2+Sp2(Tc1+Tc2)/2+Sp3(Tc2+Tc3)/2+Sp4(Tc3+Tc4)/2+Sp5(Tc4+Tc5)/2)'))
#Cl=0.18 rho = 0.000737 v**2 = 810471.67 Area = ... 597.31762079
root.connect('p1.Sp1', 'p.Sp1')
root.connect('p2.Sp2', 'p.Sp2')
root.connect('p3.Sp3', 'p.Sp3')
root.connect('p4.Sp4', 'p.Sp4')
root.connect('p5.Sp5', 'p.Sp5')
root.connect('p6.Sw1', 'p.Sw1')
root.connect('p7.Sw2', 'p.Sw2')
root.connect('p8.Sw3', 'p.Sw3')
root.connect('p9.Sw4', 'p.Sw4')
root.connect('p10.Sw5', 'p.Sw5')
root.connect('p11.Tc1', 'p.Tc1')
root.connect('p12.Tc2', 'p.Tc2')
root.connect('p13.Tc3', 'p.Tc3')
root.connect('p14.Tc4', 'p.Tc4')
root.connect('p15.Tc5', 'p.Tc5')
root.connect('p16.Rc', 'p.Rc')
root.connect('p.Sp1', 'con.Sp1')
root.connect('p.Sp2', 'con.Sp2')
root.connect('p.Sp3', 'con.Sp3')
root.connect('p.Sp4', 'con.Sp4')
root.connect('p.Sp5', 'con.Sp5')
root.connect('p.Sw1', 'con.Sw1')
root.connect('p.Sw2', 'con.Sw2')
root.connect('p.Sw3', 'con.Sw3')
root.connect('p.Sw4', 'con.Sw4')
root.connect('p.Sw5', 'con.Sw5')
root.connect('p.Tc1', 'con.Tc1')
root.connect('p.Tc2', 'con.Tc2')
root.connect('p.Tc3', 'con.Tc3')
root.connect('p.Tc4', 'con.Tc4')
root.connect('p.Tc5', 'con.Tc5')
root.connect('p.Rc', 'con.Rc')
top.driver = ScipyOptimizer()
top.driver.options['optimizer'] = 'COBYLA'
top.driver.add_desvar('p1.Sp1', lower=13, upper=33)
top.driver.add_desvar('p2.Sp2', lower=3, upper=23)
top.driver.add_desvar('p3.Sp3', lower=10, upper=30)
top.driver.add_desvar('p4.Sp4', lower=25, upper=45)
top.driver.add_desvar('p5.Sp5', lower=25, upper=45)
top.driver.add_desvar('p6.Sw1', lower=55, upper=65)
top.driver.add_desvar('p7.Sw2', lower=55, upper=65)
top.driver.add_desvar('p8.Sw3', lower=45, upper=55)
top.driver.add_desvar('p9.Sw4', lower=32, upper=42)
top.driver.add_desvar('p10.Sw5', lower=30, upper=40)
top.driver.add_desvar('p11.Tc1', lower=80, upper=100)
top.driver.add_desvar('p12.Tc2', lower=56, upper=76)
top.driver.add_desvar('p13.Tc3', lower=37, upper=45)
top.driver.add_desvar('p14.Tc4', lower=19, upper=29)
top.driver.add_desvar('p15.Tc5', lower=5, upper=15)
top.driver.add_objective('p.Cdi')
top.driver.add_constraint('con.L', lower=220000, upper=240000)
recorder = SqliteRecorder('Outershell')
recorder.options['record_params'] = True
recorder.options['record_metadata'] = True
top.driver.add_recorder(recorder)
top.setup()
top.run()
top.cleanup() # this closes all recorders
print('\n')
print('Minimum of %f found at: ' % (top['p.Cdi']))
print('\n')
print('Lift produced is: %f ' % (top['con.L']))
print('SP1 = %f' % (top['p.Sp1']))
print('\n')
print('SP2 = %f' % (top['p.Sp2']))
print('\n')
print('SP3 = %f' % (top['p.Sp3']))
print('\n')
print('SP4 = %f' % (top['p.Sp4']))
print('\n')
print('SP5 = %f' % (top['p.Sp5']))
print('\n')
print('SW1 = %f' % (top['p.Sw1']))
print('\n')
print('SW2 = %f' % (top['p.Sw2']))
print('\n')
print('SW3 = %f' % (top['p.Sw3']))
print('\n')
print('SW4 = %f' % (top['p.Sw4']))
print('\n')
print('SW5 = %f' % (top['p.Sw5']))
print('\n')
print('Rc = %f' % (top['p.Rc']))
print('\n')
print('TC1 = %f' % (top['p.Tc1']))
print('\n')
print('TC2 = %f' % (top['p.Tc2']))
print('\n')
print('TC3 = %f' % (top['p.Tc3']))
print('\n')
print('TC4 = %f' % (top['p.Tc4']))
print('\n')
print('TC5 = %f' % (top['p.Tc5']))
print('\n')
`