Everything I've searched for has only yielded apply as a solution, which I know is not really an optimized method. For example:
df['c1'].apply(lambda x: int(x2, 2))
I've been looking at the doc pages for pd.Series but can't find anything so far.
Is there a faster way to do this?
Edit: Turn this:
0 11111
1 00000
2 00000
3 00010
4 00011
5 00100
6 00000
7 00001
8 01001
9 00000
10 00111
11 10111
12 11001
13 01001
14 01100
15 01100
16 00000
17 00110
18 10101
19 10101
20 01011
21 01110
22 01110
23 10101
24 00001
25 01001
26 01010
27 00000
28 00000
29 00000
...
139861 01000
139862 10000
139863 00100
Into this:
0 31
1 0
2 0
3 2
4 3
5 4
6 0
7 1
8 9
9 0
10 7
11 23
12 25
13 9
14 12
15 12
16 0
17 6
18 21
19 21
20 11
21 14
22 14
23 21
24 1
25 9
26 10
27 0
28 0
29 0
..
139861 8
139862 16
139863 4
applyis not optimized? The documentation is not saying that (at least not explicitly): pandas.pydata.org/pandas-docs/stable/generated/…numpyarray you can follow the methods presented in stackoverflow.com/questions/37373017/…