90

Given this CSV file:

"A","B","C","D","E","F","timestamp"
611.88243,9089.5601,5133.0,864.07514,1715.37476,765.22777,1.291111964948E12
611.88243,9089.5601,5133.0,864.07514,1715.37476,765.22777,1.291113113366E12
611.88243,9089.5601,5133.0,864.07514,1715.37476,765.22777,1.291120650486E12

I simply want to load it as a matrix/ndarray with 3 rows and 7 columns. However, for some reason, all I can get out of numpy is an ndarray with 3 rows (one per line) and no columns.

r = np.genfromtxt(fname,delimiter=',',dtype=None, names=True)
print r
print r.shape

[ (611.88243, 9089.5601000000006, 5133.0, 864.07514000000003, 1715.3747599999999, 765.22776999999996, 1291111964948.0)
 (611.88243, 9089.5601000000006, 5133.0, 864.07514000000003, 1715.3747599999999, 765.22776999999996, 1291113113366.0)
 (611.88243, 9089.5601000000006, 5133.0, 864.07514000000003, 1715.3747599999999, 765.22776999999996, 1291120650486.0)]
(3,)

I can manually iterate and hack it into the shape I want, but this seems silly. I just want to load it as a proper matrix so I can slice it across different dimensions and plot it, just like in matlab.

3 Answers 3

169

Pure numpy

numpy.loadtxt(open("test.csv", "rb"), delimiter=",", skiprows=1)

Check out the loadtxt documentation.

You can also use python's csv module:

import csv
import numpy
reader = csv.reader(open("test.csv", "rb"), delimiter=",")
x = list(reader)
result = numpy.array(x).astype("float")

You will have to convert it to your favorite numeric type. I guess you can write the whole thing in one line:

result = numpy.array(list(csv.reader(open("test.csv", "rb"), delimiter=","))).astype("float")

Added Hint:

You could also use pandas.io.parsers.read_csv and get the associated numpy array which can be faster.

Sign up to request clarification or add additional context in comments.

6 Comments

I would add that the skiprows=1 flag is skipping the first row, and is not a standard activation flag if you want to keep all the data. Worked perfectly!
loadtxt does not load also the column names which happen with names=True on genfromtxt
Can I ask - is open local to that single line? As in, does the file close at the end of the line?
Yes, it closes the file. See also: stackoverflow.com/questions/8011797/…
@fireball.1 speed tests for claims like this would be great for posterity
|
6

I think using dtype where there is a name row is confusing the routine. Try

>>> r = np.genfromtxt(fname, delimiter=',', names=True)
>>> r
array([[  6.11882430e+02,   9.08956010e+03,   5.13300000e+03,
          8.64075140e+02,   1.71537476e+03,   7.65227770e+02,
          1.29111196e+12],
       [  6.11882430e+02,   9.08956010e+03,   5.13300000e+03,
          8.64075140e+02,   1.71537476e+03,   7.65227770e+02,
          1.29111311e+12],
       [  6.11882430e+02,   9.08956010e+03,   5.13300000e+03,
          8.64075140e+02,   1.71537476e+03,   7.65227770e+02,
          1.29112065e+12]])
>>> r[:,0]    # Slice 0'th column
array([ 611.88243,  611.88243,  611.88243])

2 Comments

Interestingly, this does not change the result in my case. I am using Python 2.5 and numpy 1.4.1 so maybe that is the problem
I'm using Python 2.6 and NumPy 1.3.0! I like the older behavior better.
4

You can read a CSV file with headers into a NumPy structured array with np.genfromtxt. For example:

import numpy as np

csv_fname = 'file.csv'
with open(csv_fname, 'w') as fp:
    fp.write("""\
"A","B","C","D","E","F","timestamp"
611.88243,9089.5601,5133.0,864.07514,1715.37476,765.22777,1.291111964948E12
611.88243,9089.5601,5133.0,864.07514,1715.37476,765.22777,1.291113113366E12
611.88243,9089.5601,5133.0,864.07514,1715.37476,765.22777,1.291120650486E12
""")

# Read the CSV file into a Numpy record array
r = np.genfromtxt(csv_fname, delimiter=',', names=True, case_sensitive=True)
print(repr(r))

which looks like this:

array([(611.88243, 9089.5601, 5133., 864.07514, 1715.37476, 765.22777, 1.29111196e+12),
       (611.88243, 9089.5601, 5133., 864.07514, 1715.37476, 765.22777, 1.29111311e+12),
       (611.88243, 9089.5601, 5133., 864.07514, 1715.37476, 765.22777, 1.29112065e+12)],
      dtype=[('A', '<f8'), ('B', '<f8'), ('C', '<f8'), ('D', '<f8'), ('E', '<f8'), ('F', '<f8'), ('timestamp', '<f8')])

You can access a named column like this r['E']:

array([1715.37476, 1715.37476, 1715.37476])

Note: this answer previously used np.recfromcsv to read the data into a NumPy record array. While there was nothing wrong with that method, structured arrays are generally better than record arrays for speed and compatibility.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.