If you want to have different markers for different groups of data (the colours are automatically cycled by matplotlib):
import numpy as np
import matplotlib.pyplot as plt
markers = ['o', #'circle',
'v', #'triangle_down',
'^', #'triangle_up',
'<', #'triangle_left',
'>', #'triangle_right',
'1', #'tri_down',
'2', #'tri_up',
'3', #'tri_left',
'4', #'tri_right',
'8', #'octagon',
's', #'square',
'p', #'pentagon',
'h', #'hexagon1',
'H', #'hexagon2',
'D', #'diamond',
'd', #'thin_diamond'
]
n_markers = len(markers)
a = [10.*np.random.random(int(np.random.random()*10)) for i in xrange(n_markers)]
fig = plt.figure()
ax = fig.add_subplot(111)
for i, data in enumerate(a):
xs = data.shape[0]*[i,] # makes the abscissas list
marker = markers[i % n_markers] # picks a valid marker
ax.plot(xs, data, marker, label='data %d, %s'%(i, marker))
ax.set_xlim(-1, 1.4*len(a))
ax.set_ylim(0, 10)
ax.legend(loc=None)
fig.tight_layout()
Notice the limits to y scale are hard coded, change accordingly. The 1.4*len(a) is meant to leave room on the right side of the graph for the legend.
The example above has no point in the x=0 (would be dark blue circles) as the randomly assigned size for its data set was zero, but you can easily place a +1 if you don't want to use x=0.