You can use zip to unzip helpful into separate columns:
df['helpful_numerator'], df['helpful_denominator'] = zip(*df['helpful'])
Edit
As mentioned by @MaxU in the comments, if you want to drop the helpful column from your DataFrame, use pop when selecting the column in zip:
df['helpful_numerator'], df['helpful_denominator'] = zip(*df.pop('helpful'))
Timings
Using the following setup to create a larger sample DataFrame and functions to time against:
df = pd.DataFrame({'A': list('abc'), 'B': [[0,1],[2,3],[4,5]]})
df = pd.concat([df]*10**5, ignore_index=True)
def root(df):
df['C'], df['D'] = zip(*df['B'])
return df
def maxu(df):
return df.join(pd.DataFrame(df.pop('B').tolist(), columns=['C', 'D']))
def flyingmeatball(df):
df['C'] = df['B'].apply(lambda x: x[0])
df['D'] = df['B'].apply(lambda x: x[1])
return df
def psidom(df):
df['C'] = df.B.str[0]
df['D'] = df.B.str[1]
return df
I get the following timings:
%timeit root(df.copy())
10 loops, best of 3: 70.6 ms per loop
%timeit maxu(df.copy())
10 loops, best of 3: 151 ms per loop
%timeit flyingmeatball(df.copy())
1 loop, best of 3: 223 ms per loop
%timeit psidom(df.copy())
1 loop, best of 3: 283 ms per loop