It is best to collect values in a list, and perform the concatenate or array creation once, at the end.
h = [np.zeros(4)]
for x in range(3):
x1 = some array of length of 4 returned from a previous function (3,5,6,7)
h = h.append(x1)
h = np.array(h)
# or h = np.vstack(h)
All the concatenate/stack/array functions takes a list of multiple items. It is faster to append to a list than to do a concatenate of 2 items.
======================
Let's try your approach step by step:
In [189]: h=np.zeros(4)
In [190]: h
Out[190]: array([ 0., 0., 0., 0.]) # 1d array (4,) shape
In [191]: x1=np.array([3,5,6,7]) # another 1d
In [192]: h1=np.concatenate((h,x1),axis=0)
In [193]: h1
Out[193]: array([ 0., 0., 0., 0., 3., 5., 6., 7.])
In [194]: h1.shape
Out[194]: (8,) # also a 1d array, but with 8 items
In [195]: x1=np.array([6,3,6,7])
In [196]: h1=np.concatenate((h1,x1),axis=0)
In [197]: h1
Out[197]: array([ 0., 0., 0., 0., 3., 5., 6., 7., 6., 3., 6., 7.])
In this case I'm adding (4,) arrays one after the other, still getting a 1d array.
If I go back an create x1 as 2d (1,4):
In [198]: h=np.zeros(4)
In [199]: x1=np.array([[6,3,6,7]])
In [200]: h1=np.concatenate((h,x1),axis=0)
...
ValueError: all the input arrays must have same number of dimensions
I get this dimension error right away.
The fact that you get the error on the 2nd iteration suggests that the 1st x1 is (4,), but the 2nd is 2d.
When you have dimensions errors like this, check the shapes.
vstack adds dimensions to the inputs, as needed, so you can build 2d arrays:
In [207]: h=np.zeros(4)
In [208]: x1=np.array([3,5,6,7])
In [209]: h=np.vstack((h,x1))
In [210]: h
Out[210]:
array([[ 0., 0., 0., 0.],
[ 3., 5., 6., 7.]])
In [211]: x1=np.array([6,3,6,7])
In [212]: h=np.vstack((h,x1))
In [213]: h
Out[213]:
array([[ 0., 0., 0., 0.],
[ 3., 5., 6., 7.],
[ 6., 3., 6., 7.]])
list1.append(list2)shapeofhafter the first concatenate? Don't useconcatenateunless you understand the dimensions of your inputs.